UPS不间断电源的研究与设计 软件程序.doc(精选6篇)
UPS不间断电源的研究与设计 软件程序.doc 第1篇
流程图
清中断标志位清定时器1读取A/D转换值计算输出电压偏差表指针到最大返回表头表指针加1正半波?正负半波信号置1正负半波信号置0查正弦表计算PWM占空比更新PWM占空比中断返回
图1 CCP1中断服务子程序
算法实现程序
//-----------------------------//
SPWM信号调制
//-----------------------------#include
#include
//系统配置
__CONFIG(HS&PWRTEN&BOREN&PROTECT&WDTEN);//打开看门狗,选择高速晶振,上电延时复位,掉电复位使能,代码保护 //------------------1 //-----------AD1通道转换--------------------void ad_0(){ AN0;
//选择通道0 //延时,采样电容充电 //开启AD //等待AD结束
//结果转存到变量AD_RES_0 DELAY();ADGO=1;
while(ADGO);
ad_res_0=ADRES;} //-----------AD1通道转换--------------------void ad_1(){ AN1;DELAY();ADGO=1;while(ADGO);ad_res_1=ADRES;if(ad_res_1>132){sin_am-=0.005;if((ad_res_1-132)>10)sin_am-=0.04;} else
if((ad_res_1<=132)(ad_res_1>=130))sin_am+=0;else
if(ad_res_1<130){sin_am+=0.005;if((130-ad_res_1)>10)sin_am+=0.04;} if(sin_am>1.6)sin_am=1.6;} //------------AD2通道转换-------------------void ad_2(){ AN2;DELAY();ADGO=1;while(ADGO);ad_res_2=ADRES;2 } const unsigned char
sin_[]={40,50,73,85,100,113,127,141,157,170,180,189,196,200,203,204, //正半周 204,203,200,195,188,179,169,157,144,129,113,96,78,59,39,15 //负半周
};unsigned char sin_num;
//sin函数表查表变量
//------------------void CCP_start(){ CCPR2L=0X0;//设置CCP2,0%的脉宽输出 CCPR1L=0X0;//设置CCP1,0%的脉宽输出 TRISC=0X00;PR2=0Xff;//PORTC are outputs //设置PWM的工作周期,16MHz,PWM周期15.562kHz CCP1M3=1;CCP1M2=1;//CCP1模块PWM模式 CCP2M3=1;CCP2M2=1;//CCP2模块PWM模式 sin_up=1;sin_num=0;sin_am=0;//正负半周SIN函数 //脉宽周期调整计数器 //sin函数的幅值
sin_am=0.3000;//sin函数的幅值 crut_ie=1;} //-------------中断服务程序---------------------void interrupt key_ccp_timer(){ if(TMR2IF&TMR2IE){ TMR2IF=0;//定时器2中断服务函数
if(sin_num==31){sin_num=0;sin_up=!sin_up;} sin_d=sin_[sin_num];
//定时器1中断服务函数 //电流慢保护允许
sin_l=sin_am*sin_d;if(sin_l>=255)sin_l=255;
//限幅
//换向 if(sin_up){CCPR2L=(unsigned char)sin_l;CCPR1L=0;} else {CCPR1L=(unsigned char)sin_l;CCPR2L=0;}
//换向
sin_num++;} CLRWDT();//清除看门狗
if(RBIFRBIE){RBIF=0;if((!RB6)power_ie)k=1;}
if(TMR1IF&TMR1IE){ TMR1IF=0;tm_sum++;if(tm_sum==31){ tm_sum=0;tmr_s=!tmr_s;tmr_d=1;} } } //-------------------//主程序 main(){ CLRWDT();//清除看门狗
port_init();//端口初始化 init_start();//开机状态 adc_init();//ad通道初始化
//--------------------RC4=0;//继电器关闭 RC3=1;//关闭脉冲封锁
//--------------------TMR1CS=0;//同步模式
//端口b中断服务函数 T1SYNC=0;TMR1H=0XFD;//内部指令周期
TMR1L=0X10;TMR1IE=1;//定时器1初值 //定时器1中断使能
//--------------------------TRISC=0X00;
//端口C输出
TRISC1=TRISC2=1;//RC1,RC2输入模式 PEIE=1;
//外围模块中断使能 //打开定时器2中断使能 //开全局中断
//打开定时器2 TMR2IE=1;GIE=1;
TMR2ON=1;TOUTPS3=0;TOUTPS2=1;TOUTPS1=0;TOUTPS0=0;//定时器2后分频器5分频 TMR1ON=1;power_ie=1;while(1)
{
CLRWDT();if(k){
DELAY();DELAY();DELAY();DELAY();DELAY();DELAY();DELAY();DELAY();DELAY();DELAY();DELAY();DELAY();if(kRB6){k=0;power=!power;} if(power){
} power_ie=0;//开关间隔开始计时 RC3=0;RC4=1;
//打开脉冲封锁 //打开继电器
//开机
//开关机标志
//延时 //延时 //清除看门狗
//打开定时器1 //允许开机
CCP_start();//开始SPWM 5
} if(!power){
}
//关机
power_ie=0;//开关间隔开开始计时 crut_if=0;//电流保护标志清零 volue_if=0;//电池电压保护标志清零 RC3=1;
//关闭脉冲封锁
//复位CCP模块 CCP2CON=0;CCP1CON=0;RC2=RC1=0;RC4=0;
//置端口固定电平
//关闭继电器
//------输出电流检测------
if(power_up){
if(ad_res_0>=204){ crut_if=1;crut_tmr=0;crut_ie=0;
}
//高于2v电流慢保护
//电流高于4v,快保护
if((ad_res_0>=102)(ad_res_0<204)){
if(tmr_stmr_dcrut_ie){
} tmr_d=0;crut_tmr++;if(crut_tmr==10){ }
//时基,时基变化标志,保护允许
crut_tmr=0;crut_ie=0;crut_if=1;//保护
} if(ad_res_0<102)//电流正常低于2v { crut_tmr=0;L2_OFF;if(crut_if);} //------电池电压检测------
if(ad_res_2>=102){L1_OFF;if(volue_if);} //电池电压大于2v,if((ad_res_2<102)(ad_res_2>=91))//电池低于2v大于1.8v if(ad_res_2<92)//电池低于1.8v { volue_if=1;}
} //-----模拟采集
}
} if(power)ad_1();//在开机状态下检测反馈电压 ad_2();ad_0();//采集电池电压 //采集电流
if(power_ie==0)//开关机时间间隔 {
} if(power_up==0)//上电延时1秒检测电池电压 {
} if(tmr_stmr_d){tmr_d=0;power_up_s++;} if(power_up_s==1){power_up_s=0;power_up=1;} if(tmr_stmr_d){tmr_d=0;power_s++;} if(power_s==10){power_s=0;power_ie=1;} 7
UPS不间断电源的研究与设计 软件程序.doc 第2篇
2011-8-19 0:00:00 目前市场上曾经有不同类型的UPS电源,按UPS不中断电源的任务形式方式可分为后备式、双变换在线式、在线互动式几大类。
1、后备式UPS电源 它是运动式UPS的最后方式,使用普遍,技术幼稚,普通只用小功率范畴,电路复杂,价钱昂贵。这种UPS对电压的频次不稳、波形畸变以及从电网侵入的搅扰等不良影响根本上没有任何改善: 其任务功能特性:
1)市电应用率高,可达96%。
2)输出才能强,对负载电流波峰因数、浪涌系数、输出功率因数、过载等没有严厉的限制。
3)输出转换开关受切换电流才能和举措工夫限制。
4)输出功率因数和输出电流谐波取决于负载本质。
2、在线互动式UPS电源 也称为三端口式UPS电源,运用的是工频变压器。从能量传送的角度来思索,其变压器在三个能量活动的端口;端口一衔接市电输出,端口二经过双向变换器与蓄电池相连,端口三输出,市电供电时,交换电经端口一流入变压器,在稳压电路的掌握下挑选适宜的变压器抽头拉入,同时在端口二的双向变换器的作用下借助蓄电池的能量转换单独调理端口三上的输出电压,以此来到达比拟好的稳压成效。当市电掉电时,蓄电池经过双向变换器经端口二给变压器供电,保持端口三上的交换输出。在线动式UPS电源在变压器抽头切换的进程中,双向变换器作为逆变器方式任务,蓄电池供电,因而能完成输出电压的不中断。其任务功能特性:
1)市电应用率高,可达98%。
2)输出才能强,对负载电流波峰因数、浪涌系数、输出功率因数、过载等没有严厉的限制。
3)输出功率因数和输出电流谐波取决于负载本质。
4)变换器间接接在输出端,并处于热备份形态。对输出电压尖峰搅扰有抑止造用。
5)输出开关具有断开工夫,以致UPS输出仍有转换工夫,但比后备式小得多。
6)变换器同时具有充电功用,且其充电才能很强。
7)如在输出开关与主动稳压器之间串接一电感,当市电掉电时,逆变器可立刻向负载供电,可防止输出开关未断开时,逆变器反应到电网而呈现短路的风险。
3、双变换在线式UPS电源 它是属于串联功率传输方式。当市电具有时,完成AC->DC转换功用,一方面向DC->AC逆变器提供能量,同时还向蓄电池充电。该整流器多为可控硅整流器,但也有IGBT-PWM-DSP高频变换新一代整流器。当逆变时,完成DC->AC转换功用,向输出端提供高质量电能,不论由市电供电或转向电池供电,其转换工夫为零。当逆变器过载或发作毛病时,逆变器中止输出,动态开关主动转换,由市电间接向负载供电。动态开关为智能型大功率无触点开关。其任务功能特性:
1)不论有无市电供给,负载的局部功率都由逆变器提供,保证高质量的电力输出。
2)由于局部负载功率都由逆变器提供,因而UPS的输出才能不幻想,对负载提出限制条件,如负载流峰值因数,过载才能,输出功率因数等。
3)对可控整流器还具有输出功率因数低,无功消耗大,输出谐波电流对电网发生极大的,当然,若运用IGBT-PWM-DSP整流技术胜利率因数校正技术,可把输出功率因数进步到接近1。
4、双逆变电压弥补在线式UPS电源 此项技术是近些年提进去的,次要是把交换稳压技术中的电压弥补原理(delta变换)使用到UPS的主电路中,发生一种新的UPS电路构造型式,它属于串并联功率传输。其任务功能特性:
1)逆变器(II)监视输出端,并与逆变器(I)参与主电路电压的调整,可向负载提供高质量的电能。
2)市电掉电时,输出电压不受影响,没有转换工夫;当负载电流发作畸变时,由逆变器(II)调整弥补,因而是在线任务方式。
3)当市电具有时,逆变器(I)与(II)只对输出电压与输出电压的差值停止调整与弥补,逆变器只承当最大输出功率的20%,因而功率余最大。过载才能强。
4)逆变器(I)同时完成对输出真个功率因数校正功用。输出功率因数可到达0.99,输出谐波电流<3%。
5)在市电具有时,由于两个逆变器承当的最大功率仅为输出功率的1/5,因而零件效率可到达96%。
6)在市电具有时,逆变器(II)功率强度仅为额外值的1/5,因而功率器件的牢靠性必定大大幅度进步。
7)由于具有输出功率因数弥补,因而有节能成效。
前端UPS不间断电源设计与维护 第3篇
1 如何设计UPS电源系统
1.1 概述
UPS电源又称不间断电源, 它能在市电突然中断时在一段时间内保证提供稳定的电力, 确保播出设备的正常工作。因此在广播电视行业得到了广泛使用, 尤其在广播电视播出机房和广播电视卫星地球站更是必不可少的设备。为了更好地使用UPS电源, 有必要了解其工作原理、使用及维护情况。
(1) UPS电源的组成。
UPS电源主要分两大部分, 主机和蓄电池。主机再细分则由三个主要部分组成:整流、逆变换、开关控制。它的工作流程是交流转直流, 直流再转交流, 即AD-DC-AC。整流器将输入的交流电转换成直流电向蓄电池充电以及为逆变器供电UPS电源的稳压功能通常是由整流器完成的, 整流器件采用可控硅或高频开关整流器, 本身具有可根据外电的变化控制输出幅度的功能, 从而当外电发生变化时 (该变化应在系统要求范围内) , 输出幅度基本不变的整流电压。逆变换器将直流电转成交流电, 输出电源频率的稳定则由逆变换器来完成, 频率稳定度取决于逆变换器震荡频率的稳定程度。
(2) UPS电源的工作原理。
在一个UPS电源中, 是依靠蓄电池储能, 蓄电池可以说是这个电源系统的支柱UPS电源之所以能够实现不间断电, 就是因为有了蓄电池, 在市电中断时, 逆变换器能将蓄电池的电能转换成交流电能输出去, 逆变器能将蓄电池的电能转换成交流电能输出送出去, 为其他用电设备继续提供电力。蓄电池除具有以直流电的形式储存电能的功能外, 对整流器来说就像接了一只大容量电容器, 其等效容量的大小, 与蓄电池容量大小成正比。我们知道电容两端的电压是不能突变的, 即可以利用蓄电池对整流器输出中含有的脉冲的抑制性和平滑性消除脉冲干扰, 起到了电源净化功能。UPS电源额定输出功率的大小主要取决于主机部分, 但也与负载性质有关, 因为UPS电源对不同性质的负载驱动能力不同, 一般负载功率应不大于UPS电源额定功率的70%。选择蓄电池容量时应根据负载功率和提供后备电力时间的长短而定, 这些因素各单位情况不尽相同, 要综合考虑。要注意的是由于蓄电池的容量会随着使用时间的增加逐渐降低, 因此选择时必须保留一定的余量。开关控制则包含逆变换器输出静态开关、旁路静态开关、维修旁路开关。
1.2 计算器电池的工作时间
蓄电池的基本参数:电压 (2 V、6 V、12V) 容量 (65AH、100AH等) 在实践过程中, 我们总结出下面的公式, 可以计算出蓄电池的工作时间:蓄电池组容量电压/主机额定功率0.75 (功率因数) =满载时蓄电池工作时间例如我们的UPS系统, 主机额定工作功率6500W, 3个电池组电压=12V10=120V电池组容量=100AH3=300AH该系统满载时蓄电池工作时间为:300AH120V/6500W0.75=7.4小时说明该系统在断电时蓄电池至少可以工作7.4小时。以实际负载功率计算:300AH120V/4500W=8小时。
我们的前端UPS系统在断电时, 最多坚持8个小时, 此结果经过我们多次放电实验, 证明是正确的。上述公式如果反推, 根据当地实际情况, 确定蓄电池所需要的工作时间, 就可以决定所需的蓄电池容量和电压。
1.3 配线选择
合理选择配线是很重要的, 线径太细, 电流太大, 容易发热而引起火灾;线径太粗, 则造成浪费。根据金属导线的电气特性, 一般多股铜芯线容量为6A/mm, 铝线容量为4A/mm, 确定主机功率后, 可以参考下表选择配线和空气开关。
1.4 选择品牌
在购买UPS电源时, 应主要考虑下列因素:输入电压范围、输出电压范围、输出频率范围、旁路逆变零切换以及抗突波、干扰、谐波失真的能力, 另外, 售后服务也很重要。大量实践证明, 如果UPS输出端的零线对地线的“干扰”电位过高, 会导致计算机网络的数据通讯的误码率增高, 如果使用高频机型, 由于高频辐射, 它会对计算机网络造成影响, 因此选型时应考虑这些问题。
2 UPS系统维护
2.1 主机的维护及注意事项
UPS主机一般是智能型的, 它对环境温度要求不高, 但要求室内清洁卫生, 否则灰尘遇潮湿会引起主机工作紊乱;主机中的参数在使用中不能随意改变;在断电时, 应避免带负载动UPS电源, 应先关掉负载, 等UPS启动后再开启负载, 否则会有多负载的冲击电流和供电电源造成UPS电源瞬间过载, 严重时会损坏变换器;不能让UPS电源经常处于满载或过载。
2.2 蓄电池的维护及注意事项
尽管使用的是免维护蓄电池, 但从广义来说一定的维护还是必要的。首先它对环境温度要求较高, 工作环境一般要求在20°C~25°C之间, 低于15°C时, 其饭店容量下降, , 温度每降低1°C, 其容量下降1%, 而温度过高 (大于30°C) 其寿命就会缩短;其次, 要防止电池短路或深度放电, 深度放电会造成电池内阻增大或充电电压过低从而导致降低甚至失去充电能力, 放电程度越深, 循环寿命越短;第三, 要避免大电流充放电, 否则会造成电池极板膨胀变形, 使得极板活性物质脱落, 内阻增大, 容量下降, 寿命缩短;第四, 由于组合电池电压很高, 存在电击危险, 因此装卸导电联接条、输出线时应有安全保障;第五, 对于不经常停电的地区, 建议用户每隔一个月对UPS进行一次人为的断电, 让UPS电源在逆变状态下工作一段时间, 防止电解液沉淀, 以便让蓄电池维持良好的充放电特性, 延长使用寿命;第六, 搬运电池时不要触动极柱和安全排气阀;第七, 不能用二氧化碳灭火器, 一旦发生火灾, 可用四氧化碳之类的灭火器;第八, 不能把不同容量、不同厂家、不同性能的电池联在一起, 否则会影响整组蓄电池的性能。
摘要:本文简要介绍了有线电视机房前端UPS不间断电源的设计思想、提出了设计标准和日程维护要求, 阐述了UPS电源对机房的重要意义。
浅析机房UPS不间断的电源设计 第4篇
【关键词】计算机 网络化 UPS选型 电源设计
【中图分类号】 TP303【文献标识码】A【文章编号】1672-5158(2013)02-0293-02
1、UPS的选型理念
对UPS进行选取,首先要掌握UPS的分类,目前市场一般按照其主电路结构的技术属性实施分类,并且广为用户认可,并以此作为标准,来判断UPS的优劣。第一类为后备式,主要有APC的BK500,山特的TG500;第二类为在线互动式,主要有APC的SmartUPS;第三类为在线双变换式,主要有MGE和EXIDE的大机;第四类为在线电压补偿式,主要有APC秀康DP300系列UPS。而具体描述UPS的技术性能指标有四大类:一是对电网的适应能力;二是满足负载要求的UPS常规输出指标;三是UPS的输出能力和可靠性;四是智能管理和通信功能。那么在这四大类指标中,比较和选择UPS应重点关注,一直是当前专家和行业大用户普遍认可的一些观点:
1.1 选择大功率UPS要慎重考虑UPS的输入功率因数和输入电流谐波
双逆变在线式UPS,其AC/DC逆变器多为整流滤波电路,它的输入功因数低,一般只在0.8左右,输入电流谐波大,达30%,加专门滤波措施后,也仅能降到10%。输入功率因数低,意味着输入无功功率大,输入谐波电流则干扰破坏电网,特别是三相大功率UPS这两项指标危害很大,形成所谓的电力公害,这会1)使由同一电网供电的变压器、电动机、电容器等产生附加谐波损耗、过热、加速老化;2)引起异步电动机转矩降低,振动加剧噪声增大;3)引起继电器和自动装置误动作,其次谐波对通讯线路、测量仪器产生辐射干扰,影响电能计量的精度等。所以,UPS的输入功率因数和输入谐波电流应被视为重要性能指标之一,应该把输入功率因数>0.95,输入电流谐波<5%作为判定UPS性能指标是否合格的标准之一。
欧美发达国家早已立例,严格限制用电设备对电网的污染。我国有关部门亦正制订相关法规,施行日期亦不会遥远,因此用户在购买UPS不间断电源时,若不考虑此因素,将会留下日后治理的诸多麻烦,造成经济上的重大损失,同时也会因为治理而产生系统效率降低,可靠性下降等副作用。作为UPS,相应有三类解决方案。
第一,对于带有整流滤波输入的传统双变换UPS,无论是采用相控或不控整流,从市电吸取能量的方式均不是连续的正弦波,而是以脉动的断续方式向电网吸取电流,使得这类UPS具有谐波电流,功率因数低、效率低,对电网造成较大的污染,若采用12脉冲整流及输入滤波器,虽然可以将输入功率因数改善到0.95,谐波电流小于5%,但系统的总效率降低到90%左右,且成本增加,可靠性下降。
第二,输入整流器采用高频化整流技术,输入功率因数≈1,输入总谐波电流<5%,对电网无污染。但电路复杂,AC-AC总效率一般为92%左右。
第三,采用双逆变电压补偿在线式的UPS,其输入端是一个四象限高频逆变器,从市电吸取的电流是连续的正弦波,且与输入电压同相位,因此其输入功率因数≈1,输入谐波电流≤ 3%,对电网无污染。 AC-AC总效率高达96%。
由上可见,目前只有采用双逆变电压补偿在线式UPS,才能在获得输入功率因数≈1,输入谐波电流<3%的同时,保持UPS系统AC-AC总效率达96%或以上。双逆变电压补偿在线式UPS为APC公司专利技术。APC Silcon 20K系列大型UPS,即属此类。
1.2 要考虑UPS的输出能力与可靠性。
输出功率因数、输出电流波峰系数、输出过载能力、输出不平衡负载的能力等指标,直接反映了UPS的输出能力,对这些指标的限制,说明了UPS输出能力的局限性和脆弱的一面,尽管在配置UPS容量时尽可以使负载满足UPS的要求,甚至留出很大的余量,但这些指标却直接反映了UPS的可靠性。过载能力强,允许输出电流波峰系数高的,对负载功率因数限制小的,在同样电网环境和负载条件运行,其可靠性必然高,这是毋容置疑的道理。
1.3 要考虑效率与可靠性
UPS的工作效率高时,意味着节省电能,这是绿色电源的标志之一。但还应该注意到效率与可靠性是密切相关的,效率高意味着电路技术先进,元器件选用得好,意味着功器件功率损耗小,功率强度小,温度低,这必然会增强元器件乃至整机的寿命和可靠性。
根据***镇政府的实际情况和未来网络设备扩容的需要,我们建议为网络中心机房选配一台APC秀康SL20KW ,它的延迟时间有2小时,充分保证网络中心机房设备的电源供给。
2、APC秀康SL20KW系列UPS的性能优势
秀康SL20KW系列 UPS有绿色电源之称,DELTA逆变器技术把电压补偿原理成功地运用到UPS主电路中,使Silcon UPS的指标在很多方面超过其它同类产品,就目前情况下,有的指标是其它方案的UPS无论如何也达不到的。
下面的八个指标体现了Silcon UPS的优越性:
2.1 输入功率因数等于1对于一般UPS而言,要提高输入功率因数,就必须加输入功率因数校正电路,成本很高。
但是,Silcon UPS却轻易实现了输入功率因数为1,它借助于DELTA逆变器对输入电流进行调制,使UPS的输入端对电网来说相当一个纯线性电阻,输入电流和电压完全同相。在整个负载电流范围内,输入功率因数都很高,这是其它校正技术难以实现的。
输入功率因数高的好处有两点:一是减少了无功电流对电网的污染;二是使输入无功功率为零,可降低电网功率容量,可用1.2(考虑效率和传输损耗)的电网容量和油机的功率容量向UPS配电,而一般功率因数低的UPS则需要1.5倍的电网功率容量或2.5-3倍的油机功率容量向UPS配电。同时还降低其它供电设备诸如开关、传输线、熔断器、变压器等的功率容量,降低设备投资成本。
2.2 对电网无高次谐波干扰
一般UPS的输入电压电流都有很大失真,输入端的可控整流电路可使电流谐波失真高达30%以上,既使增加外部滤波装置也仅能降至10%,而Silcon UPS的输入电流电压不仅同相,而且是纯正的正弦波,谐波电流可降至3%以下,这是其它UPS很难做到的。
效率高本身就意味着节省能源,降低能源成本,以100KVA的UPS为例,与一般双逆变器UPS相比,使用Silcon可把电能损耗降低7%,即7KW,如果常年连续运行,每年节约24(小时)x 365(天)x7KW=61320KWH。
2.3 UPS主机功率器件的寿命长,可靠性高
UPS主要器件的寿命可靠性是与它承担的功率(功率强度)有直接关系的,一个大功率半导体器件的寿命和可靠性直接与它承担的电压、电流、功耗和壳温有关,以功耗而言,在其额定功率范围内,实际使用功率如增大一倍,其平均寿命就降低20-30%(非线性关系)。
在市电存在的情况下,Silcon UPS主逆变器只承担了20%的负载功率,这与一般UPS(承担100%的负载功率)相差相当悬殊。功率器件的寿命和可靠性的提高是显而易见的。
在UPS选用的过程中,应当结合机房的具体条件来选用,例如机房系统规模、系统的形式、常规性的UPS单元容量等。在安装过程中,还要求有经验的操作人员进行,充分结合以往工程经验,以及主要供货商的产品规格对自己的机房进行选用、安装。同时安全性、稳定性是安装过程中最需要考虑的因素,充分保证工作连续性。
参考文献
[1]孙法文.浅谈UPS不间断电源的选配[A]第三届浙江中西部科技论坛论文集(第四卷电力分卷)[C],2006年
[2]刘晓静.林彬.深度探讨高校中心机房智能监控设备设计与实现[J];中国科教创新导刊,2010年04期
[3]丁习兵.和军平.延汇文.一种新型无源无损软开关UPS充电拓扑研究[J];电力电子技术,2010年01期
[4]陈浩.张昊然.体育场照明系统管理[A],第二十四届中国(天津) 2010IT、网络、信息技术、电子、仪器仪表创新学术会议论文集[C],2010年
[5]施建荣.颜士军.窦荣启.数据机房新型电源系统研究与应用[A];通信电源新技术论坛——2010通信电源学术研讨会论文集[C],2010年
UPS不间断电源选型原则 第5篇
(1)考虑UPS使用的供电系统,后端负载性质。国内供电系统可分为TN、TT、IT三种形式,在TN系统中又分为TN-C、TN-S、TN-C-S,对于UPS系统常规采用TN-S即三相五线制系统。对后端负载来说,计算机设备允许有10ms以下的供电间断,质量好的后备式UPS就可满足需要,但受限于一些原因,后备式UPS的容量基本为3KVA以下。对重要服务器网络系统,在运行过程中是不予许存在中断的情况发生,要选用稳定可靠、不间断输出的在线式UPS。
(2)考虑UPS系统的性能和使用的运行环境。如后端负载在启动时存在较大的冲击电流、后端负载为工业设备等情况下建议采用工频UPS。如UPS用于数据机房中,后端负载为常规服务器、交换机设备,则工频与高频UPS都可适用。这时应考虑机房安装、机房承重、设备运输、产品性价比等因素来权衡选择。
(3)考虑UPS产品推出的时间年代,各厂家在针对市场的变化以及技术的更新下都会在2~3年推出相应的换代产品。这时选择UPS产品不光要看产品性能参数,也应关注产品服务保障,产品应用案例,厂商整体实力等。2.UPS额定容量的选择 ?
首先要清楚后端负载的标称容量、动态容量及将来是否扩容等情况,然后根据需要选配UPS。一般情况下将负载容量定在UPS额定容量的50%~80%左右较为适宜,同时兼顾UPS的效率和利用率,并使UPS留有一定余量,以便在后期需要时,可以进行扩容。
3.UPS后备电池供电时间的选择 ?
在GB50174-2008《电子信息系统机房设计规范》中对于机房等级分为A、B、C三级,亦对三个等级中不间断电源系统电池备用时间做出要求。A、B两种机房要求15min(柴油发电机作为后备电源时),C级机房根据实际需要确定。在大多数情况下,网点、企业分支等机房中并无配置备用电源,用户需根据实际情况选择合适的备用时间。在如今的供电环境中,出现市电故障的概率已经大大降低,建议配置的后备时间不超过2h(过长的时间蓄电池组过多,UPS本身存在一定的充电功率限制),如若用电环境较差,则建议增加备用电源或改为双路供电系统等其他方式。且数据机房一般的生命周期在4~5年(大多数厂商蓄电池的质
UPS不间断电源的研究与设计 软件程序.doc 第6篇
陈权胜(民航中南空中交通管理局技术保障中心 510000)
摘要:众所周知,民航系统对于供电的要求极高,特别是在机场管理、空中管制这两大重点IT系统。要确保这两大系统全天候、不间断、无差错地实现空中交通、通信、导航、雷达监测等管理服务,需要应用UPS提供365天×24小时“全天候”无中断供电。本文就UPS直流电源故障应急措施进行分析及改进,提出了自己的建议和看法。具有一定的参考价值。关键词:UPS不间断电源;故障;应急;措施
1.前言
UPS的中文意思为“不间断电源”,是英语“Uninterruptible Power Supply”的缩写,它可以保障计算机系统在UPS电源整体解决方案停电之后继续工作一段时间以使用户能够紧急存盘,使您不致因停电而影响工作或丢失数据。众所周知,民航系统对于供电的要求极高,特别是在机场管理、空中管制这两大重点IT系统。要确保这两大系统全天候、不间断、无差错地实现空中交通、通信、导航、雷达监测等管理服务,需要应用UPS提供365天×24小时“全天候”无中断供电。为确保空管供电系统的绝对安全,配置了4台PW9315 625KVA UPS电源。4台UPS每2台构成1套“1+1”并机系统,然后2套并机系统输出并联后由STS系统分配给负载供电,其原理如图1,具体由每2套UPS(1+1)以双母线方式组成并机向一台负载供电,由STS在两路交流电源构成的双总线供电系统中承担着检测、切换的核心任务。系统运行时,备用机跟踪主设备输出,当主设备发生供电中断时,可以实现电流和电压的同步切换。这样就避免了由于断电、电压不稳等造成的系统单点故障,提高了方案的可靠性和可用性,并且这种设计实现了负载的同步转换,可以对系统进行在线维护和在线升级,保证系统稳定持久运行。
UPM1 主输入 静态旁路输入维修旁路输入 整流器 逆变器 FBP CBP 电池组 MBP主输入 整流器 逆变器 MIS CBS 输出 MBC柜 电池组 SBM柜 UPM2
图1:UPSA系统组成
2.UPS不间断电源故障和应急
在对UPM1做正常关机的操作时,UPM1的输出开关不能正常分闸,在合分闸处来回跳动。UPM2输出开关断开,UPSA转旁路工作,三台STS转另一路电源B,其中一台STS出现B路电源静态开关故障并锁在此路,A路电源的输入开关断开。
(1)故障前运行方式
机组正常带负荷运行,UPS工作方式正常(两组UPS各自带不同的负荷,直流和旁路电源均是正常备用状态),STS状态正常。(2)UPS故障现象: UPM1输出开关来回跳动,UPM2输出开关断开,UPSA转旁路工作,三台STS转另一路电源B,其中一台STS出现B路电源静态开关故障并锁在此路,A路电源的输入开关断开。(3)UPS故障处理: ① UPM1输出开关来回跳动,按UPS紧急停机键停机,检查到UPSA转旁路工作,三台STS转另一路电源B,其中一台STS出现B路电源静态开关故障并锁在此路,A路电源的输入开关断开。UPM1的输入开关和电池输入开关处于分闸状态,UPM1输出开关处于脱扣位。
② 检查负荷供电正常,先处理故障的STS,对它进行转B路的旁路操作,然后重起,故障消除,STS恢复正常工作。
③ 确认UPSA转旁路工作,手动储能使UPM1的输出开关转到分闸位,重新开机,UPM1恢复正常,确认了是UPM1输出开关的马达驱动机构有故障,用备件更换后,按正常开机程序,开机正常,UPM1恢复正常。
④ 确认UPM1、UPM2输出正常后,UPSA转回逆变器工作。⑤ 检查UPSA输出电压和电流正常,两套UPS、STS工作正常,负荷供电正常。
(4)STS转电源B路的分析
UPSA的交流旁路电源电压与逆变器输出电压之间的相位差超差(一般UPS允许的最大相位差在3.6°~15°之间)或上述两种电压间的瞬态电压差过大(如超过25V以上)时,静态开关逻辑控制电路会发出禁止切换命令。在这种情况下,由市电交流旁路供电至逆变器供电的切换操作只能采取不同步切换方式,以免在执行切换操作的瞬间因环流过大而引发事故。当UPSA需从逆变器供电向市电交流旁路供电切换时,是采用“先断开后接通”的控制方式来执行切换操作的。即先让位于逆变器供电通道上的接触器断开,然后在经过0.2s~0.8s的时间延迟后,才让处于市电交流旁路通道上的静态开关中的晶闸管导通。因此,当UPSA在执行不同步切换操作时,对用户的供电而言,它有可能会出现0.2s~0.8s的供电中断,所以STS才会转到电源B路。3.总结经验
(1)做UPS正常开关机操作,有异常情况发生时,需及时按下紧急停机按键,处理UPS的故障情况可优先按紧急停机按键,在维护时可以按正常开关机操作。
(2)UPS1的输出开关来回跳动会影响到与它并机的UPM2的输出,使得UPSA输出异常。在做UPM的维护时,可以选择转到旁路,或者把UPSA所带的负荷转到UPSB。保证系统的安全性。
(3)UPS的开关驱动机构有一定的寿命,不能够频繁的操作,在发现有异常后需要及时更换。
4.改进措施