开关电源的电磁兼容性技术(精选8篇)
开关电源的电磁兼容性技术 第1篇
开关电源的电磁兼容性技术 引言
电磁兼容是一门新兴的跨学科的综合性应用学科。作为边缘技术,它以电气和无线电技术的基本理论为基础,并涉及许多新的技术领域,如微波技术、微电子技术、计算机技术、通信和网络技术以及新材料等。电磁兼容技术应用的范围很广,几乎所有现代化工业领域,如电力、通信、交通、航天、军工、计算机和医疗等都必须解决电磁兼容问题。其研究的热点内容主要有:电磁干扰源的特性及其传输特性、电磁干扰的危害效应、电磁干扰的抑制技术、电磁频谱的利用和管理、电磁兼容性标准与规范、电磁兼容性的测量与试验技术、电磁泄漏与静电放电等。
电磁兼容的英文名称为Electromagnetic Compatibility,简称EMC。所谓电磁兼容是指设备(分系统、系统)在共同的电磁环境中能一起执行各自功能的共存状态。这里包含两层意思,即它工作中产生的电磁辐射要限制在一定水平内,另外它本身要有一定的抗干扰能力。这便是设备研制中所必须解决的兼容问题。电磁兼容技术涉及的频率范围宽达0 GHz ~400GHz,研究对象除传统设备外,还涉及芯片级,直到各种舰船、航天飞机、洲际导弹甚至整个地球的电磁环境。
电磁兼容三要素是干扰源(骚扰源)、耦合通路和敏感体。切断以上任何一项都可解决电磁兼容问题,电磁兼容的解决常用的方法主要有屏蔽、接地和滤波。2 电磁兼容技术名词(1)电磁兼容性
电磁兼容性是指设备或者系统在其电磁环境中能正常工作,且不对该环境中任何事物构成不能承受的电磁骚扰的能力。(2)电磁骚扰
电磁骚扰是指任何可能引起设备、装备或系统性能降低或者对有生命或者无生命物质产生损害作用的电磁现象。电磁骚扰可引起设备、传输通道或系统性能的下降。它的主要要素有自然和人为的骚扰源、通过公共地线阻抗/内阻的耦合、沿电源线传导的电磁骚扰和辐射干扰等。电子系统受干扰的路径为:经过电源,通过信号线或控制电缆、场渗透,经过天线直接进入;通过电缆耦合,从其他设备来的传导干扰;电子系统内部场耦合;其他设备的辐射干扰;电子设备外部耦合到内部场;宽带发射机天线系统;外部环境场等(3)电磁环境
电磁环境是一种明显不传送信息的时变电磁现象,它可能与有用信号叠加或组合。(4)电磁辐射
电磁辐射是指电磁波由源发射到空间的现象。“电磁辐射”一词的含义有时也可引申,将电磁感应现象也包含在内。RFI/EMI可以通过任何一种设备机壳的开口、通风孔、出入口、电缆、测量孔、门框、舱盖、抽屉和面板以及机壳的非理想连接面等进行辐射。RFI/EMI也可由进入敏感设备的导线和电缆进行辐射,任何一个良好的电磁能量辐射器也可以作为良好的接收器。(5)脉冲
脉冲是指在短时间内突变,随后又迅速返回至其初始值的物理量。(6)共模干扰和差模干扰
电源线上的干扰有共模干扰和差模干扰两种方式。共模干扰存在于电源任何一相对大地或电线对大地之间。共模干扰有时也称纵模干扰、不对称干扰或接地干扰。这是载流导体与大地之间的干扰。差模干扰存在于电源相线与中线及相线与相线之间。差模干扰也称常模干扰、横模干扰或对称干扰。这是载流导体之间的干扰。共模干扰提示了干扰是由辐射或串扰耦合到电路中的,而差模干扰则提示了干扰是源于同一条电源电路。通常这两种干扰是同时存在的,由于线路阻抗的不平衡,两种干扰在传输中还会相互转化,所以情况十分复杂。干扰经长距离传输后,差模分量的衰减要比共模大,这是因为线间阻抗与线-地阻抗不同的缘故。出于同一原因,共模干扰在线路传输中还会向邻近空间辐射,而差模则不会,因此共模干扰比差模更容易造成电磁干扰。不同的干扰方式要采取不同的干扰抑制方法才有效。判断干扰方法的简便方法是采用电流探头。电流探头先单独环绕每根导线,得出单根导线的感应值,然后再环绕两根导线(其中一根是地线),探测其感应情况。如感应值是增加的,则线路中干扰电流是共模的;反之则是差模的。(7)抗扰度电平和敏感性电平
抗扰度电平是指将某给定的电磁骚扰施加于某一装置、设备或者系统并使其仍然能够正常工作且保持所需性能等级时的最大骚扰电平。也就是说,超过此电平时该装置、设备或者系统就会出现性能降低。而敏感性电平是指刚刚开始出现性能降低的电平。所以,对某一装置、设备或者系统而言,抗扰度电平与敏感性电平是同一数值。(8)抗扰度裕量
抗扰度裕量是指装备、设备或者系统的抗扰度电平限值与电磁兼容电平之间的插值。3 开关电源的电磁兼容性
开关电源因工作在高电压大电流的开关工作状态下,引起电磁兼容性问题的原因是相当复杂的。从整机的电磁性讲,主要有共阻抗耦合、线间耦合、电场耦合、磁场耦合及电磁波耦合几种。共阻耦合主要是骚扰源与受骚扰体在电气上存在的共同阻抗,通过该阻抗使骚扰信号进入受骚扰体。线间耦合主要是产生骚扰电压及骚扰电流的导线或 PCB线因并行布线而产生的相互耦合。电场耦合主要是由于电位差的存在,产生感应电场对受骚扰体产生的场耦合。磁场耦合主要是指在大电流的脉冲电源线附近,产生的低频磁场对骚扰对象产生的耦合。电磁场耦合主要是由于脉动的电压或电流产生的高频电磁波通过空间向外辐射,对相应的受骚扰体产生的耦合。实际上,每一种耦合方式是不能严格区分的,只是侧重点不同而已。在开关电源中,主功率开关管在很高的电压下,以高频开关方式工作,开关电压及开关电流均接近方波,从频谱分析知,方波信号含有丰富的高次谐波。该高次谐波的频谱可达方波频率的1000次以上。同时,由于电源变压器的漏电感及分布电容以及主功率开关器件的工作状态非理想,在高频开或关时,常常产生高频高压的尖峰谐波震荡。该谐波震荡产生的高次谐波,通过开关管与散热器间的分布电容传入内部电路或通过散热器及变压器向空间辐射。用于整流及续流的开关二极管,也是产生高频骚扰的一个重要原因。因整流及续流二极管工作在高频开关状态,二极管的引线寄生电感、结电容的存在以及反向恢复电流的影响,使之工作在很高的电压及电流变化率下,且产生高频震荡。整流及续流二极管一般离电源输出线较近,其产生的高频骚扰最容易通过直流输出线传出。开关电源为了提高功率因数,均采用了有源功率因数校正电路。同时,为了提高电路的效率及可靠性,减少功率器件的电应力,大量采用了软开关技术。其中零电压、零电流或零电压/零电流开关技术应用最为广泛。该技术极大的降低了开关器件所产生的电磁骚扰。但是,软开关无损吸收电路多数利用L、C进行能量转移,利用二极管的单向导电性能实现能量的单向转换,因此,该谐振电路中的二极管成为电磁骚扰的一大骚扰源。
开关电源一般利用储能电感及电容器组成L、C滤波电路,实现对差模及共模骚扰信号的滤波。由于电感线圈的分布电容,导致了电感线圈的自谐振频率降低,从而使大量的高频骚扰信号穿过电感线圈,沿交流电源线或直流输出线向外传播。滤波电容器随着骚扰信号频率的上升,引线电感的作用导致电容量及滤波效果不断的下降,甚至导致电容器参数改变,也是产生电磁骚扰的一个原因。4 电磁兼容性的解决方法
从电磁兼容的三要素讲,要解决开关电源的电磁兼容性问题,可从三个方面入手:第一,减小骚扰源产生的骚扰信号;第二,切断骚扰信号的传播途径;第三,增强受骚扰体的抗骚扰能力。在解决开关电源内部的兼容性时,可以综合利用上述三个方法,以成本效益比及实施的难易性为前提。因而,开关电源产生的对外骚扰,如电源线谐波电流、电源线传导骚扰、电磁场辐射骚扰等只能用减小骚扰源的方法来解决。一方面,可以增强输入/输出滤波电路的设计,改善APFC电路的性能,减小开关管及整流、续流二极管的电压、电流变化率,采用各种软开关电路拓扑及控制方式等;另一方面,加强机壳的屏蔽效果,改善机壳的缝隙泄漏,并进行良好的接地处理。而对外部的抗骚扰能力(如浪涌、雷击)应优化交流电输入及直流输出端口的防雷能力。通常,对1.2/50?s开路电压及8/20?s短路电流的组合雷击波形,因能量较小,通常采用氧化锌压敏电阻与气体方电管等的组合方法来解决。对于静电放电,通常在通信端口及控制端口的小信号电路中,采用TVS管及相应的接地保护、加大小信号电路与机壳等的电距离来解决或选用具有抗静电骚扰的器件。快速瞬变信号含有很宽的频谱,很容易以共模的方式传入控制电路内,采用与防静电相同的方法并减小共模电感的分布电容、加强输入电路的共模信号滤波(加共模电容或插入损耗型的铁氧体磁环等)来提高系统的抗扰性能。
减小开关电源的内部骚扰,实现其自身的电磁兼容性,提高开关电源的稳定性及可靠性,应从以下几个方面入手:①注意数字电路与模块电路PCB布线的正确分区;②数字电路与模拟电路电源的去耦;③数字电路与模拟电路单点接地、大电流电路与小电流特别是电流电压取样电路的单点接地以减小共阻骚扰,减小地环地影响,布线时注意相邻线间的间距及信号性质,避免产生串扰,减小输出整流回路及续流二极管回路与支流滤波电路所包围的面积,减小变压器的漏电、滤波电感的分布电容,运用谐振频率高的滤波电容器等。5 滤波器结构
滤波是一种抑制传导干扰的方法。例如,在电源输入端接上滤波器,可以抑制来自电网的噪声对电源本身的侵害,也可以抑制由开关电源产生并向电网反馈的干扰。电源滤波器作为抑制电源线传导干扰的重要单元,在设备或系统的电磁兼容设计中具有极其重要的作用。它不仅可以抑制传输线上的传导干扰,同时对传输线上的辐射发射也具有显著的抑制效果。在滤波电路中,选用穿心电容、三端电容、铁氧体磁环,能够改善电路的滤波特性。进行适当的设计或选择合适的滤波器,并正确的安装滤波器是抗干扰技术的重要组成部分。在交流电输入端加装的电源滤波器电路如图1所示。图中Ld、Cd用于抑制差模噪声,一般取Ld为100 mH-700mH,Cd取1?F-10?F。Lc、Cc用于抑制共模噪声,可根据实际情况加以调整。所有电源滤波器都必须接地(厂家特别说明允许不接地的除外),因为滤波器的共模旁路电容必须在接地时才起作用。一般的接地方法是除了将滤波器与金属外壳相接之外,还要用较粗的导线将滤波器外壳与设备的接地点相连。接地阻抗越低,滤波效果越好。滤波器尽量安装在靠近电源入口处。滤波器的输入及输出端要尽量远离,避免干扰信号从输入端直接耦合到输出端。
如在电源输出端加输出滤波器、加装高频电容、加大输出滤波电感的电感量及滤波电容的容量,则可以抑制差模噪声。如果把多个电容并联,则效果会更好。6 EMI滤波器选用与安装
开关电源EMI滤波器中的4只电容器用了两种不同的下标“x”和“y”,不仅说明了它们在滤波网络中的作用,还表明了它们在滤波网络中的安全等级。无论是选用还是设计EMI滤波器,都要认真的考虑Cx和Cy的安全等级。在实际应用中,Cx电容接在单相电源线的L和N之间,它上面除加有电源额定电压外,还会叠加L和N之间存在的EMI信号峰值电压。因此,要根据EMI滤波器的应用场合和可能存在的EMI信号峰值,正确选用适合安全等级的Cx电容器。Cy电容器是接在电源供电线L、N与金属外壳(E)之间的,对于220V、50Hz电源,它除符合250V峰值电压的耐压要求外,还要求这种电容器在电气和机械性能方面具有足够的安全裕量,以避免可能出现的击穿短路现象。7 结语
在开关电源设计中,为了少走弯路和节省时间,应充分考虑并满足抗干扰性的要求,避免在设计完成后去进行抗干扰的补救措施。
开关电源的电磁兼容性技术 第2篇
通信开关电源因具有体积小、重量轻、效率高、工作可靠、具有远程监控等原因,广泛的应用于程控交换、光数据传输、无线基站、有线电视系统及IP网络中,是信息技术设备正常工作的核心动力.随着信息技术的发展,信息技术设备遍布祖国大江南北,从发达的中心城市至贫穷落后的偏远山区,为人与人间的沟通交流及数据传输提供了极大的便利.通信设备的电网供电质量由于城乡间的差异,即有稳定的大电网如核电、火电、水电等并网的供电方式,同时也有独立的小水电单独供电方式.特别是在小水电站供电方式下,因水量的变化复杂、用户用电量的变化较大及设备工作的不稳定,造成电网波形失真严重及其电网电压和大幅波动,同时因配电系统的接线不规范,对通信开关电源也造成了严峻的考验.铁路通信及电力通信正在发展壮大.由于电力机车经过之处,产生很强的感应电压,使地线电压产生很大的波过,从而引起电网电压的很大的波动,强大的电场容易引起开关电源设备工作的瞬时不稳定.在高压电网运行的通信开关电源,虽然电网电压稳定,但容易受电网负载变化等引起的强电磁场的搔扰影响.用于基站的通信用开关电源,由于多安装在较高的建筑物上或是山顶,更容易受到雷电的袭击.因此,通信开关电源要有很强的抗电磁搔扰的能力,特别是对雷击、浪涌、电网电压、静电、电场、磁场及电磁波等要有足够的抗扰动能力,保证自身能够正常工作以及通信设备供电的不间断而且稳定.另一方面,因通信开关电源内部的功率开关管、整流或续流二极管及主功率变压器,在高压、大电流及高频开关的方式下工作,其电压电流波形多为方波.在高压大电流的方波切换过程中,方波电压电流将产生丰富的谐波电压及谐波电流,这些谐波电压及谐波电流可通过电源输入线或开关电源的输出线传出,对与通信电源在同一电网上供电的其它设备及电网产生搔扰,同时对由通信电源供电的设备如程控交换设备、无线基站、光传输设备及有线电视设备等产生搔扰,使设备不能正常工作.由于电压差可以产生电场、电流的流动可以产生磁场,丰富的谐波电压电流的高频部分,在开关电源内部产生电磁场,造成开关电源内部工作的不稳定,使电源的性能降低.有部分电磁场通过开关电源机壳的缝隙,向周围空间辐射,与通过电源线、直流输出线产生的辐射电磁场,一起通过空间传播的方式,对其它高频设备及对电磁场比较敏感的设备造成搔扰,引起其它设备工作异常.因此,要限制通信开关电源对由负载线、电源线产生的传导搔扰量对空间产生的辐射电磁场搔扰量,使之能与处于同一环境中的其它电信设备均能够正常工作,互不产生搔扰.电磁兼容性的国内国外标准
电磁兼容性是指设备或系统在其电磁环境中能正常工作且不对该环境中的任何事物构成不能随的电磁搔扰的能力
要彻底消除设备的电磁搔扰及对外部一切电磁搔扰信号不敏感是不可能的.只能通过制订系统内设备与设备之间的相互允许产生的电磁搔扰大小及抵抗电磁搔扰的能力,才能使电气设备及系统间达到电磁兼容性的要求.国内外大量的电磁兼容性标准,为系统内的设备相互达到电磁兼容性要求制订了约束条件.国际无线电干扰特别委员会(CISPR)是国际电工委员会(IEC)下属的一个电磁兼容标准化组织,早在1934年就开展EMC标准的研究,下设六个分会.其中第六分会(SCC)主要负责制订关于干扰测量接收机及测量方法的研究.CISPR16《无线电干扰和抗扰度测量设备规范》对电磁兼容性测量接收机、辅助设备的性能以及校准方法作出了详细的要求.CISPR17《无线电干扰滤波器及抑制元件的抑制特性测量》制订了滤波器的测量方法.CISPR22《信息技术设备的无线电搔扰限值和测量方法》规定了信息技术设备在0.15-1000MHz频率范围内产生的电磁搔扰限值.CISPR24《信息技术设备抗扰度限值和测量方法》规定了信息技术设备对外部搔扰信号的时域及频域的抗搔扰性能要求.其中CISPR16、CISPR22及CISPR24构成了信息技术设备包括通信开关电源设备的电磁兼容性测试内容及测试方法要求.是目前通信开关电源电磁兼容性设计的最基本要求.IEC最近也出版了大量的基础性电磁兼容标准.其中最有代表性的是IEC61000系列标准,规定了电子电气设备的雷击浪涌(SURGE)、静电放电(ESD)、电快速瞬变脉冲群(EFT)、电流谐波、电压跌落、电压瞬变及短时中断、电压起伏和闪烁、辐射电磁场、由射频电磁场引起的传导搔扰抗扰度、传导搔扰及辐射搔扰等的电磁兼容性要求.另外,美国联邦委员会制订的FCC15、德国电气工程师协会制订的VDC0871-1A1、VDE0971-2A2、VDE0878,都对通信设备的电磁兼容性提出了要求.我国对电磁兼容性标准的研究比较晚.采取的最主要的办法是引进、消化、吸收.洋为中用是国内电磁兼容性标准的制订的最主要的方法.1998年,信息产业部根据CISPR22、IEC61000系列标准及ITU-T 0.41标准,制订了UD/T983-1998《通信电源设备电磁兼容性限值及测量方法》,详尽的规定了通信电源设备包括通信开关电源的电磁兼容性的具体测试项目、要求及测试方法,为通信电源电磁兼容性的检验、达标并通过入网检测明确了设计目标.国标也等同采用了相应的检测明确了国际标准.如GB/T 17626.1-12系列标准等同采用了IEC61000系列标准;GB9254-1998《信息技术设备的无线电搔扰限值及测量方法》等同采用CISPR22;GB/T17618-1998《信息技术设备抗扰度限值和测量方法》等同采用CISPR24.开关电源引起电磁兼容性的原因
通信开关电源因工作在高电压大电流的开关工作状态下,其引起电磁兼容性问题的原因是相当复杂的.从整机的电磁兼容性讲,主要有共阻抗耦合、线间耦合、电场耦合、磁场耦合电磁波耦合几种.电磁兼容产生的三个要素为:搔扰源、传播途径及受搔扰体.共阻耦合主要是搔扰源与受搔扰体在电气上存在的共同的阻抗,通过该阻抗使搔扰信号进入受搔扰对象.线间耦合主要是产生搔扰电压及搔扰电流的导线或PCB线,因并行布线而产生的相互耦合.电场耦合主要是由于电位差的存在,产生的感应电场对受搔扰体产生的耦合.磁场耦合主要是大电流的脉冲电源线附近,产生的低频磁场对搔扰对象产生的耦合.而电磁场耦合,主要是由于脉动的电压或电流产生的高频电磁波,通过空间向外辐射,对相应的受搔扰体产生的耦合.实际上,每一种耦合方式是不能严格区分的,只是侧重点不同而已.在开关电源中,主功率开关管在很高的电压下,以高频开关方式工作,开关电压及开关电流的接近方波,从频谱分析知,方波信号含有丰富的高次谐波,该高次谐波的频谱可达方波频率的1000次以上.同时,由于电源变压器的漏电感及分布电容,以及主功率开关器件的工作状态非理想,在高频开或关时,常常产生高频高压的尖峰谐波振荡,该谐波振荡产生的高次谐波,通过开关管与散热器间的分布电容传入内部电路或通过散热器及变压器向空间辐射.用于整流及续流二级管,也是产生高频搔扰的一个重要原因.因整流及续流二极管工作在高频开关状态,由于二极管的引线寄生电感、结电容的存在以及反向恢复电流的影响,使之工作在很高的电压及电流变化率下,且产生高频振荡.因整流及续流二极管一般离电源输出线较近,其产生的高频搔扰最容易通过直流输出线传出.通信开关电源为了提高功率因数,均采用了有源功率因数效正电路.同时,为了提高电路的效率及可靠性,减小功率器件的电应力,大量的采用了软开关技术.其中零电压、零电流或零电流开关技术应用最为广泛.该技术极大的降低了开关器件所产生的电磁搔扰.但是,软开关无损吸收电路,多数利用L、C进行能量转移,利用二极管的单向导电性能实现能量的单向转换,因而,该谐振电路中的二极管成为电磁搔扰的一大搔扰源.通信开关电源中,一般利用储能电感及电容器,组成L、C滤波电路,实现对差模及共模搔扰信号的滤波,以及交流方波信号转换为平滑的直流信号.由于电感线圈的分布电容,导致了电感线圈的自谐振频率降低,从而使大量的高频搔扰信号穿过电感线圈,沿交流电源线或直流输出线向外传播.滤波电容器,随着搔扰信号频率的上升,由于引线电感的作用,导致电容量及滤波效果不断的下降,直至谐振频率以上时,完全失去电容器的作用而变为感性.不正确的使用滤波电容及引线过长,也是产生电磁搔扰的一个原因.通信开关电源由于功率密度高、智能化程度高,带MCU微处理器,因而,从高至近千伏的电压信号,到低至几伏的电压信号;从高频的数字信号,至低频的模拟信号,电源内部的场分布相当复杂.PCB布线不合理、结构设计不合理、电源线输入滤波不合理、输入输出电源线布线不合理及CPU、检测电路的设计不合理,均会导致系统工作的不稳定或如静电放电、电快速瞬变脉冲群、雷击、浪涌及传导搔扰、辐射搔扰及辐射电磁场抗扰性能力的降低.电磁兼容性研究及解决方法
电磁兼容性的研究,一般运用CISPR16及IEC61000中规定的电磁场检测仪器及各种搔扰信号模拟器、辅助设备,在标准测试场地或实验室内部,通过详尽的测试分析、结合对电路性能的理解与改进来进行分析研究.从电磁兼容性的三要素讲,要解决开关电源的电磁兼容性,可从三个方面入手.第一:减小搔扰源产生的搔扰信号.第二:切断搔扰信号的传播途径.第三,增强受搔扰体的抗搔扰能力.在解决开关电源内部的兼容性时,可以综合运用上述三个方法,以成本效益比及实施的难易性为前提.因而,开关电源产生的对外搔扰,如电源线谐波电流、电源线传导搔扰、电磁场辐射搔扰等,只能用减小搔扰源的方法来解决.一方面,可以增强输入输出滤波电路的设计,改善APFC电路的性能,减小开关管及整流续流二极管的电压电流变化率,采用各种软开关电路拓扑及控制方式等.另一方面,加强机壳的屏蔽效果,改善机壳的缝隙泄漏,并进行良好的接地处理.而对外部的抗搔扰能力,如浪涌、雷击应优化交流输入及直流输出端口的防雷能力,通常,对1.2/50us开路电压及8/20US短路电流的组合雷击波形,因能量较小,采用氧化锌压敏电阻与气体放电管等的组合方法来解决.对于静电放电,通常在通信端口及控制端口的小信号电路中,采用TVS管及相应的接地保护、加大小信号电路与机壳等的电距离来解决或选用具有抗静电搔扰的器件.快速瞬变信号含有很宽的频谱,很容易以共模的方式传入控制电路内,采用防静电相同的方法并减小共模电感的分布电容、加强输入电路的共模信号滤波(加共模电容或插入损耗型的铁氧体磁环等)来提高系统的抗扰性能.减小开关电源的内部搔扰,实现其自身的电磁兼容性,提高开关电源的稳定性及可靠性,应从以下几方面入手:注意数字电路与模块电路PCB布线的正确分区、数字电路与模拟电路单点的接地、大电流电路与小电流特别是电流电压取样电路的单点接地以减小共阻搔扰、减小地环的影响、布线时注意相邻线间的间距及信号性质,避免产生串扰、减小高压大电流回路特别是变压器原边与开关管、电源滤波电容回路所包围的面积,减小输出整流回路及续流二极管回路与直流滤波器所包围的面积,减小变压器的漏电、滤波电感的分布电容、运用谐振频率高的滤波电容器等.MCU与液晶显示器的数据线、地址线工作频率较高,是产生辐射发射的主要搔扰源:小信号电路是抗外界搔扰的最薄弱环节,适当的增设提高抗搔扰能力的TVS及高频电容、铁氧体磁珠等元器件,以提高小信号电路的抗搔扰能力;与机壳距离较近的小信号电路,应加适当的绝缘体耐压处理等.功率器件的散热器、主变压器的电磁屏蔽层要适当的接地,综合考滤各种接地措施,有助于提高整机的电磁兼容性.各控制单元间的大面积接地用接地板屏蔽,可以改善开关电源内部工作的稳定性.整流器的机架上,要考虑各整流器间的电磁耦合、整机地线布置、交流输入中线、地线及直流地线、防雷地线间的正确关系、电磁兼容级的正确分配等.开关电源对内、外的搔扰及抗搔扰中,共模信号与开关器件的工作方式、散热器的安装及整机PCB板与机壳的连接有相当复杂的关系,共模信号在一定的条件下又可转变成差模信号.解决共模搔扰最简单的方法是解决好各电路单元与整机端口、机壳间的问题.整机屏蔽难以实施且成本较高,在无可赖何的情况下才采用该措施.国内通信开关电源的电磁兼容性改进现状
开关电源的电磁兼容性技术 第3篇
电磁兼容的英文简写是EMC。它是指功能类型各异的各种设备能在同一电磁的环境下的共同存在的一种方式。就是说在运行中产生的辐射要有一定的限制, 还有必须一定的抗干扰的作用, 更重要的是具有像敏感体和耦合通路以及干扰源这三个基本的组成。这可以说是设备的研究探索电磁兼容这个问题解决的关键。
2、开关电源的电磁兼容性的现状
由于开关电源所处的复杂的工作环境, 所以电磁的各种兼容性的问题就相应的多了。比如电场耦合和线间的耦合还有磁场耦合等等几种情况是从整机在有关电磁性能方面上产生的问题。线间的耦合是指各种产生干扰的电压和对应的电流的各种功能的导线因为两条线路或者多条并行同步所以产出了相互的耦合;电场耦合指因各种电位差而使对应的感应电场受到了干扰体的一定的影响, 最终产生的一种场耦合;关于磁场耦合指的是在大电流的各种脉冲的电源线周围, 从而引起低频磁场面对干扰体所产生的一种耦合。开关的电源中, 因为开关电压和电流都无限类似方波的形式, 因此富含高次的谐波。而且, 因为开关各种器材像变压器还有电容以及其他的器件都可能处于一种不理想的状态中, 所以在高频情况下进行开或者关时, 经常会出现处于尖峰状态的高次状态下的谐波振荡, 这个谐波可以经过散热器和开关管之间存在的不同功能的电容传入系统的内部的各种电路, 也可能通过其他相关器件往空间进行辐射。另外导致有关高频干扰其他重要原因是开关二极管处于整流和续流过程中产出的。二极管的各式引线可以保存电感, 还有结电容所产生的影响, 因为不断变化的电压电流, 易激起高频形式下的自激振荡, 激起的高频干扰可以经过输出线轻松的往外传。这些状况有可能使电容器本省的特性参数发生变化, 最终产出电磁干扰现象。此外, 还有各种不同种功能特性线路的布局不合理, CPU和测定电路的各种不合理设计, 都可能使系统产生毛病, 不能处于正常的工作状态[1]。
3、开关电源电磁兼容性的处理方案
对于如何解决开关电源电磁兼容性的问题, 主要可以从以下的要点分析, 首先可以通过对干扰源进行处理;其次也可以在干扰信号进行传播的途中进行处理;最后还可以通过加强受干扰体本身的内在特点。在处理开关电源关于兼容行问题时, 使用上述的方法可以减低开关电源本身的内在干扰的问题, 最终使其更具有兼容性、稳定性和可靠性的各种特点。就比如在开关的电源激起干扰源的问题上, 像在电源线的谐波电流和传播、解决磁场辐射的干扰等等问题只可以靠处理干扰源来解决, 调整各电路的机构特点, 如适当的减小开关管口径, 二极管两端的电压以及电流的变化率, 在应用各式不同的软开关的电路并且以多种方案去掌控操作时, 应强化机外壳的屏蔽作用, 还要适当的改良机壳的外在特点, 以便于更好的进行接地的处理。至于外部最好能做到抗浪涌和雷击的特性, 系统各元件也要有较好的防雨防雷等抗外界干扰的能力。对于应付那种小型能量的雷击, 运用一定的方法将含氧化锌材质的压敏电阻和其他有效地材料合理的设计出抗雷的元件。至于静电的放电方面, 可以应用TVS管在通讯的端口和监控端口信号的电路中, 来达到接地以便于进行保护[2]。而且可以利用可以适当的调节电路和机壳之间的距离来处理, 更好的方法还可以选择具有各种不同种功能类型的元件。甚至还可以在短时间内改变信号的方式, 由于频谱本身的特定原理, 应用共模的形式运行于控制的电路中, 同时可以利用和防静电类似的做法并去改变共模电感在电路中的电容的分布、增强电路中共模信号的滤波等等一系列的措施来对系统的抗干扰性能力进行改善。
现在分析一下关于开关电源的内在干扰的问题, 根据开关电源的自身特点确实在电磁的兼容性、稳定性能方面有所欠缺, 为了解决这些方面的问题我们可以注重分区好各功能线路的不同布线, 数字电路应该注意正确的去耦, 至于模拟电路要着重关于接地的问题, 取样各类型电流和电压的电路进行正确的单点方式的接地, 这有力于减少多种内在的影响。在进行布线时, 不同类型的线间要控制好距离和信号的调节, 来避免同性相吸等等各种电学现象产生的干扰。还有可以通过对各开关旁变压器周边的回路的正确调节和调整在电源中电容回路周边的面积的大小来控制。方法确实较多, 还可以通过对开关的变压器周边的漏电检查、电感旁分布的电容量的大小, 利用谐振滤波等等类型的电容器来加以解决。在开关电源的内和外的各种干扰情况下, 和各功能器件的运行特点有着较为复杂的关系, 如散热器性能是否良好, 主板和机壳的连接状况是否良好等等方面, 不同种信号在特殊的状况下可以进行一定的转变。这些各种不同类型的方法, 都是有根有据的, 根据不同的现象, 慢慢的堆出其内在机理, 找到解决问题的引线, 在跟着线索加以研究和探讨解决的方案, 来最终达到正确处理有关开关电源电磁兼容性所出现的各种存在的问题。
4、结语
开关电源电兼磁容的技术越来越受到关注导致其迅猛的发展, 很多现代化的领域都有所覆盖, 关于开关电源电磁兼容的技术的问题, 无论是通信、航天、还是计算机领域以及医疗领域等等都要面临的巨大挑战[3]。近年来电源电磁兼容技术已经成为是电力研究一个重要的一个课题。关于这个对兼容性的研究, 至今关于此项技术还远远没有得到一定程度的完善, 所以说这就需要有关技术人员以及我们每个人共同努力。
参考文献
[1]陈卫东, 钱牛牛.电力远动测试系统在电力自动化的应用[J].电子技术, 2011, 38 (12) :59-60.
[2]刘连浩, 亮华, 沈增晖.基于IEC104规约的电力远动测试系统的设计与实现[J].现代计算机, 2008, (5) :107-109.
开关电源的电磁兼容性技术 第4篇
关键词:开关电源;电磁干扰;抑制;技术
开关电源由于其实用性,广泛运用于工业、军事、医疗等领域,在大功率高电压的电气设备之中,开关电源会受到难以避免的电磁干扰,在开关频率加大或功率密度提高的条件下,电磁的兼容性能需要加以密切的关注,也是需要切实解决的问题,本文从电子线路电磁干扰的特点入手,探讨高频开关电源电磁干扰的机理及抑制技术,对于开关电源的电磁兼容性进行测量,提供了干扰源的干扰量、传输特性及敏感度等依据,从而提高开关电源的使用效率和质量。
1 高频开关电源的概念及特点
电磁干扰即是电磁的兼容性不足,对电子设备之间的电磁辐射传导加以破坏的进程。开关电源在小型化、高频化发展的趋势中,自身的噪声源也会产生大量的传导性电磁干扰,即EMI,从而对电子系统造成不良效果。由于大量的电器设备如:计算机、通信产品、电器等的涌入,空间人为电磁能量以成倍的速度递增,电磁环境的恶化态势正显现出严重的问题。开关电源的电磁干扰是一种有害的电磁效应,它必须具备三个干扰要素,即:干扰源、敏感体、干扰耦合路径。它具有以下特点:
①开关电源在频繁的开关过程中,会产生较大的电流变化,从而不可避免地产生强大的干扰强度。
②开关电源干扰源的关键干扰装置表现在功率的开关器件、散热器、高频变压器之中,具有较为清晰的电路干扰位置。
③开关电源的干扰频率不高,主要表现为传导干扰和近距离电场干扰。
④由于线路板通常是人工布设,随意性较大,对于线路板分布参数的提取和评估,增加了难度,同时,人工布设不当也是产生电磁干扰源的一个原因。
⑤开关电源的电磁干扰与网侧阻抗不匹配,呈现变化的趋势,难以把握。而且,滤波器中的电器元件要在使用中承受较大的无功功率,就无疑增加了电源体积,降低了效率。
2 开关电源的工作原理及电磁干扰机理分析
2.1 开关电源的构造及工作原理
开关电源的构造由主电路、控制电路、检测电路、辅助电源构成,其中:主电路包括输入滤波器、整流器、逆变等;控制电路则是通过对输出端的数据的取样,在比较之下控制逆变器,从而改变输出频率或脉宽,实现电路稳定。检测电路重点提供保护电路中的参数,还显示各种仪表数据。辅助电源则负责提供单一电路的不同电源。
开关电源控制的工作原理,如下图1所示:
在图1中,K开关负责无定时的接通或断开,在K开关接通时,E电源向开关K和滤波电路提供负载RL及能量;在K开关断开时,E电源中止提供能量。由此可知,电源提供的负载和能量是无定时的、间断的状态,而为了使开关获取稳定连续的能量供给,需要配备储能装置,即在能量接通时负责实现对能量的储存,在开关断开时,负责释放储存的能量,这个装置由图中的电感L、电容C2、二极管D构成,这个电路具有上述功能。可以将图中AB之间的电压平均值用EAB表示,用以下公式加以计算和控制:
E=TT·E
上式中:Ton表示每次接通开关的时间;T表示开关通断的周期间隔。在这两个要素变化的条件下,AB之间的电压平均值也会改变,这种改变控制称为“时间比率控制”。开关电源控制原理,主要表现为三种方式:脉冲宽度调制;脉冲频率调制;混合调制。
2.2 电磁干扰的产生机理分析
开关电源的电磁干扰是存在电路之中的无用信号、噪声等,它们对于电气设备、通道产生的干扰,开关电源自身存在有大量的谐波干扰,同时还有潜在的电磁干扰,并集中显现于电压、电流变化较大的电气元器件之中。电磁干扰产生的机理主要有以下几点:
①开关电路产生的电磁干扰。由开关管和高频变压器构成的开关电路是开关电源的核心,具有较大幅度的脉冲,谐波丰富,开关电路产生的电磁干扰主要是由于开关管负载为高频变压器初级线圈,在开关管接通与断开的瞬间,会出现较大的电压尖峰,产生磁化冲击电流的瞬变,这就造成了属于传导性质的电磁干扰。
②整流电路造成的电磁干扰。整流电路的整流二极管在接通状态时,有较大的正向电流,然而当其终断时受反的电压影响,而产生一个反向电流,还包含较多的高频谐波分量,产生剧烈的电流变化。
③高频变压器产生的电磁干扰。在高频开关电源构成中,变压器初级线圈、开关管和滤波电容,会形成高频开关电流环路,在这个环路之内有极大的空间辐射,若电容滤波性能不好或容量不足,电容上的高频阻抗就会将高频电流传导到交流电源中,造成传导干扰。同时,值得一提的是,整流电路造成的干扰强度较大、频带较宽,是较为重要的电磁干扰源之一。
④分布电容生成的电磁干扰。由于开关电源正向高频发展,因而分布电容也是电磁干扰源之一,由于散热片和开关管的集电极之间的绝缘片接触面积大而薄,高频电流会由分布电容流过,产生共模干扰。
3 开关电源电磁干扰的抑制技术举措分析
对于开关电源电磁干扰的抑制技术,主要可以从三个途径着手:其一,减少电磁干扰源的干扰信号;其二,截断电磁干扰信号路径;其三,提高电磁干扰敏感体的抗干扰性能。下面,本文可以就抑制开关电源电磁干扰的技术进行分述:
3.1 软开关抑制技术
软开关抑制技术基于“硬”开关基础之上,它是利用谐振技术或控制技术,连通或截断零电流状态下的先进技术。它在小型化、轻量化、电磁兼容性高的发展特点之下,有效地降低了开关损耗和噪声,提高了开关电源的使用频率。
软开关与“硬”开关的区别在于:“硬”开关在开关过程中的电压和电流都不为零,有重叠的状况;而且电压、电流的变化较大,脉冲较为明显,产生较大的开关噪声。而软开关由于增添了电感、电容等谐振元件,减少了电压、电流的重叠,有效降低了开关噪声。
软开关技术中包括多种技术,如:谐振变换器、准谐振变换器、零开关PWM变换器、零转换PWM变换器。其中:谐振变换器是基于标准PWM变换器之上,附加谐振网络,从而实现零电压或零电流的开关。准谐振变换器则是在PWM开关上附加谐振元件的控制技术。零开关PWM变换器是先利用谐振实现换相,再运用PWM方式工作。零转换PWM变换器是并联一个谐振网络,由此而产生零开关条件,实现控制技术。但是,值得注意的是,软开关技术要有辅助电路的添加实现,才能较好地实现对开关电源EMI的有效改善和优化。
3.2 开关频率调制技术
首先,要明晰频率调制的概念,频率调制是指瞬时频率偏移跟随调制信号m(t)成比例变化的调制,它可以用以下公式表示:
=Km(t)
其次,我们再分析开关频率调制技术的应用思想:固定频率调制脉冲在低频段上产生电磁干扰,并集中于低频段的各个谐波点之上,它通过调制开关频率fc,将集中的能量加以分散,从而有效降低各个谐波点上的EMI值,它关注的是使分散的各频点都在EMI的限值之内,而并非降低电磁干扰的总量。鉴于这一应用思想,开关频率调制技术在降低噪声频谱峰值的过程中,采用随机频率控制法和调制频率控制法。
其中:随机频率控制法是在开关电源间隔之中加入随机扰动分量,分散各频点的噪声能量,使离散的尖峰脉冲噪声转化为连续、分散的各频点噪声,从而降低峰值。调制频率控制法则是在电路产生的锯齿波中加入调制波形,生成离散频段的边频带,使噪声能量分散到这些边频带之上,这样,就可以在不影响变换器工作的前提下,抑制开关的通断时的电磁干扰。
3.3 共模电磁干扰的有源抑制技术
共模干扰也称不对称干扰、接地干扰,它是电流的载体与大地之间的电磁干扰,有源抑制技术的应用思想主要是在主回路中提取与导致干扰的开关电压波形完全反相的补偿EMI噪声电压,在保证开关电源正常工作的前提下,消除较宽频段内的共模干扰。这一抑制技术是作用于电磁干扰源本身,是非常有效的共模电磁干扰抑制技术。
3.4 抑制电磁干扰的缓冲电路设计
对于缓冲电路设计的开关电源可以消除电力线内潜在的电磁干扰,对于阻抗和消除电快速瞬变、电涌、电压高低变化、电力线谐波等,可以起到较重要的作用。试例50kHz开关控制电源的构造图为:(图2)
其中:开关元件在有外来电压变化时,产生较多的谐波成分而导致其波形失真,图中的线性阻抗稳定网络可以有效地抑制共模干扰,在其对称结构和适宜的去耦处理与设计下加以解决。整流滤波电路由整流电路和大电容构成,它可以产生高频的矩形脉冲,并可以促进稳压反馈作用,稳定输出的电压。场效应管开关主电路是核心电路,设计之中添加了一个缓冲电路来抑制EMI,它主要采用灵敏接地的方法解决共模辐射的问题。
3.5 滤波抑制技术
这是一种常用而高效的高频开关电源电磁干扰抑制技术,它的应用原理为:在高频开关电源的输入输出端口,接上滤波器,阻抗开关电源在电网中的干扰信号,其干扰信号主要是传导干扰,并表现为共模干扰和“差模”干扰两种形式,其中:共模干扰是非对称性的干扰,它是干扰信号对地的电位差以及电网串连的噪声,具有幅度大、频率高、干扰性能较大的特性;“差模”干扰是对称性干扰,它是电磁场在信号间耦合感应以及不平衡电路转换而产生的电压,它在添加抗干扰滤波器的条件下,可以有效地抑制干扰信号。“差模”干扰具有幅度小、频率低、干扰较小的特性。
3.6 PCB抑制技术
PCB抗干扰抑制技术的目的是为了减小PCB的电磁辐射,解决PCB电路之间的串扰现象。它包括布局、布线及接地设计,其布局设计与电气设计类似,设计流程为:首先考虑PCB的尺寸和形状,要保持最佳电路板的矩形形状,即长宽比为3:2或4:3,使其可以承受一定的机械强度;然后,再确定特殊元器件的位置设计。由于发生器、“晶振”易产生干扰噪声,因而在设计时的位置要相互靠近;最后,再根据电路的功能单元进行整体布局,要考虑元器件的分布参数,确保均匀、整齐而紧凑,尽量减少元器件之间的引线和连接,还要选取不易产生噪声的、不易传导的、不易辐射噪声的元器件。
3.7 屏蔽抗干扰抑制技术
由于开关电源会在传播空间产生电场和磁场,因而,可以考虑采用屏蔽的措施,将电磁干扰源和受干扰物之间隔离一层与地相连的屏蔽片,这种屏蔽技术可以采用两种方式,其一是静电屏蔽,用于阻抗“静电”场和恒定磁场的干扰;其二是电磁屏蔽,用于阻抗交变电场、磁场的干扰,这样,就可以使电磁波产生衰减,减少对电气设备的干扰影响。
总而言之,高频的开关电源会在信号传输过程中产生电磁干扰,不利于电气设备的安全、稳定运行,因而,需要采用适宜的开关电源电磁干扰抑制技术,使电磁干扰得到有效的衰减,保障电气设备稳定、高效。
参考文献:
[1]李林.开关电源纹波的计算和仿真——稳态纹波篇[J].今日电子,2014(02).
[2]陈天乐.开关电源的新技术与发展前景[J].通信电源技术,2014(02).
[3]白丽华.开关电源的干扰及其抑制[J].科技信息,2013(10).
[4]高孝天.开关电源控制模式的探讨[J].科技创新与应用,2013(12).
通信开关电源的电磁兼容性论文 第5篇
通信开关电源因具有体积小、重量轻、效率高、工作可靠、可远程监控等优点,而广泛应用于程控交换、光数据传输、无线基站、有线电视系统及IP网络中,是信息技术设备正常工作的动力核心。
随着信息技术的发展,信息技术设备遍布大江南北,从发达的中心城市至偏远山区,为人与人之间的沟通交流及信息传输提供了极大的便利。由于城乡间的差异,通信设备的供电网既有稳定的大电网供电方式,也有独立的小水电供电方式。在小水电站供电方式下,因水量的变化、用户用电量的变化较大及发电设备工作的不稳定,造成电网波形失真严重及电压波动大,同时因配电系统的接线不规范,对通信用开关电源形成了严峻的考验。
铁路通信及电力通信正在发展壮大。由于电力机车经过之处,产生很强的感应电压,使地线电压产生很大的波动,从而引起电网电压的很大波动,强大的电场容易引起开关电源设备工作的瞬时不稳定。在高压电网附近运行的通信开关电源,虽然电网电压稳定,但容易受电网负载变化等引起的强电磁场的干扰影响。
用于基站的通信开关电源,由于多安装在较高的建筑物上或山顶,更易受到雷电的袭击。
因此,通信开关电源要有很强的抗电磁干扰能力,特别是对雷击、浪涌、电网电压波动的适应能力,而对静电干扰、电场、磁场及电磁波等也要有足够的抗干扰能力,保证自身能够正常工作以及对通信设备供电的稳定性。
另一方面,因通信开关电源内部的功率开关管、整流或续流二极管及主功率变压器,是在高压、大电流及高频开关的方式下工作,其电压电流波形多为方波。在高压大电流的方波切换过程中,将产生严重的谐波电压及电流。这些谐波电压及电流一方面通过电源输入线或开关电源的输出线传出,对与通信电源在同一电网上供电的其它设备及电网产生干扰,同时对由通信电源供电的设备如程控交换设备、无线基站、光传输设备及有线电视设备等产生干扰,使设备不能正常工作;另一方面严重的谐波电压电流在开关电源内部产生电磁干扰,从而造成开关电源内部工作的不稳定,使电源的性能降低。还有部分电磁场通过开关电源机壳的缝隙,向周围空间辐射,与通过电源线、直流输出线产生的辐射电磁场,一起通过空间传播的方式,对其它高频设备及对电磁场比较敏感的设备造成干扰,引起其它设备工作异常。
因此,对通信开关电源,要限制由负载线、电源线产生的传导干扰及由辐射传播的电磁场干扰,使处于同一电磁环境中的电信设备均能够正常工作,互不干扰。
2国内外电磁兼容性标准
电磁兼容性是指设备或系统在其电磁环境中能正常工作且不对该环境中的任何事物构成不能承受的电磁干扰的能力。
要彻底消除设备的电磁干扰及对外部一切电磁干扰信号不敏感是不可能的。只能通过系统地制订设备与设备之间的相互允许产生的电磁干扰大小及抵抗电磁干扰的能力的标准,才能使电气设备及系统间达到电磁兼容性的要求。国内外大量的电磁兼容性标准,为系统内的设备相互达到电磁兼容性制订了约束条件。
国际无线电干扰特别委员会(CISPR)是国际电工委员会(IEC)下属的一个电磁兼容标准化组织,早在1934年就开展EMC标准的研究,下设六个分会。其中第六分会(SCC)主要负责制订关于干扰测量接收机及测量方法的标准。CISPR16《无线电干扰和抗扰度测量设备规范》对电磁兼容性测量接收机、辅助设备的性能以及校准方法给出了详细的要求。CISPR17《无线电干扰滤波器及抑制元件的抑制特性测量》制订了滤波器的测量方法。CISPR22《信息技术设备的无线电干扰限值和测量方法》规定了信息技术设备在0.15~1000MHz频率范围内产生的电磁干扰限值。CISPR24《信息技术设备抗扰度限值和测量方法》规定了信息技术设备对外部干扰信号的时域及频域的抗干扰性能要求。其中CISPR16、CISPR22及CISPR24构成了信息技术设备包括通信开关电源设备的电磁兼容性测试内容及测试方法要求,是目前通信开关电源电磁兼容性设计的最基本要求。
IEC最近也出版了大量的基础性电磁兼容性标准,其中最有代表性的是IEC61000系列标准。它规定电子电气设备的雷击、浪涌(SURGE)、静电放电(ESD)、电快速瞬变脉冲群(EFT)、电流谐波、电压跌落、电压瞬变及短时中断、电压起伏和闪烁、辐射电磁场、由射频电磁场引起的传导干扰抗扰度、传导干扰及辐射干扰等的电磁兼容性要求。
另外,美国联邦委员会制订的FCC15、德国电气工程师协会制订的VDE08712A1、VDE08712A2、VDE0878,都对通信设备的电磁兼容性提出了要求。
我国对电磁兼容性标准的研究比较晚。采取的最主要的办法是引进、消化、吸收,洋为中用是国内电磁兼容性标准制订的最主要方法。,信息产业部根据CISPR22、IEC61000系列标准及ITUTO.41标准,制订了YD/T9831998《通信电源设备电磁兼容性限值及测量方法》,详尽规定了通信电源设备包括通信开关电源的电磁兼容性的具体测试项目、要求及测试方法,为通信电源电磁兼容性的检验、达标并通过入网检测明确了设计目标。
国标也等同采用了相应的国际标准。如GB/T17626.1~12系列标准等同采用了IEC61000系列标准;GB92541998《信息技术设备的无线电干扰限值及测量方法》等同采用CISPR22;GB/T176181998《信息技术设备抗扰度限值和测量方法》等同采用CISPR24。
开关电源的电磁兼容性技术 第6篇
作者Email:SHUJUN.WANG@MT.COM
摘 要: 系统地分析了TOPSwitchⅡ系列开关电源产生噪声的主要原因及产生噪声的回路和部件,给出了相应的抗干扰措施,从而提高了开关电源的电磁兼容性。
关键词: 开关电源 噪声 电磁兼容性
TOPSwitchⅡ开关电源具有单片集成化、外围电路简单、效率高的优点,在大多数的电子设备中得到了广泛的应用。然而,开关电源自身产生的各种噪声却形成了一个很强的电磁干扰源。这些干扰随着开关频率的提高、输出功率的增大而明显地增强,对电子设备的正常运行构成了潜在的威胁;同时,一些国家对此也有严格的指标,不能满足者将被拒之门外。本文以美国PI公司TOPSwitchⅡ系列为例,介绍开关电源的电磁干扰及其抑制。
1 开关电源产生噪声的原因
开关电源工作在高频、高压、大电流开关状态,并以开和关的时间比来控制输出电压的高低。TOPSwitchⅡ系列器件工作频率为100kHz,电源线路内的dv/dt很大,产生的各种噪声通过电源线以共模或差模方式向外传导,同时还向周围空间辐射噪声。图1给出了一种典型TOPSwitchⅡ系列的开关电源电路图,下面以此为例分析其产生噪声的主要原因。
1.1电源一次侧回路的噪声
在一次整流回路中,整流二极管D1~D4只有在脉动电压超过C2的充电电压的瞬间,电流才从电源输入侧流入。所以,一次整流回路产生高次畸变波,如图1,形成噪声,这是影响传导辐射的一个重要指标。此外, 电源在工作时,TOPSwitchⅡ处于高频率通断状态,在由脉冲变压器初级线圈L1、TOPSwitchⅡ和滤波器C2构成的高频电流环路中,如果布局、布线不合适,造成环路面积过大,可能会产生较大的空间辐射噪声。如图2(A),为初级电流Ipri的波形,其基波为开关频率,谐波即为干扰波形。
1.2 电源二次侧回路的噪声
电源在工作时,整流二极管D7也处于高频通断状态,由脉冲变压器次级线圈L2、整流二极管D7和滤波电容C6构成了高频开关电流环路,如果布局、布线不合适,造成环路面积过大,可能向空间辐射噪声。同时,硅二极管在正向导通时PN结内的电荷被积累,二极管加反向电压时积累的电荷将消失并产生反向电流。由于二次整流回路中D7在开关转换时频率很高,即由导通转变为截止的时间很短,在短时间内要让存储电荷消失就产生反电流的浪涌。由于直流输出线路中的分布电容、分布电感的存在,使因浪涌引起的干扰成为高频衰减振荡。如图2(C)所示,Vd波形具有电压变化率高、上升沿和下降沿陡峭的特点。其峰值电压由变压器和输出整流管的分布电容所决定。振铃干扰波形的频率变化是20-30MHZ。
1.3脉冲变压器的噪声
脉冲变压器是开关电源中进行能量储存与传输的重要部件,其性能的优劣,不仅对电源效率有较大的影响,而且直接关系到电源电磁兼容性(EMC) 。对EMC而言,要求脉冲变压器漏感小、绕组本身的分布电容及各绕组之间的耦合电容要小。
2.开关电源的电磁兼容性设计
抑制开关电源的噪声可采取三方面的技术:一是滤波;二是变压器的绕制;三是屏蔽。
2.1 滤波
针对开关电源主要通过电源线向外传输噪声的特点,采用滤波技术抑制干扰,可分为:交流侧滤波、
直流侧滤波及其他一些辅助措施。
(1)交流侧滤波:开关电源的交流电源线输入端插入共模和差模滤波器,防止开关电源的共模和差模噪声传递到电源线中,影响电网中其它用电设备,同时也抑制来自电网的噪声。交流侧滤波器如图3A、B、C、D所示,其中L为共模扼流圈,图A、B中的电容器C能滤除串模干扰。图C、D抑制电磁干扰的效果更佳,图C中的L、C1和C2用来滤除共模干扰,C3和C4用来滤除串模干扰,R为泄放电阻,可将C3上积累的电荷泄放掉,避免因电荷积累而影响滤波特性;断电后还能使电源的进线端L、N不带电,保证用户的安全。
(2)直流侧滤波:在开关电源的直流输出侧插入如图3所示的电源滤波器,它由共模扼流圈L1、扼流圈L2和电容C1、C2组成。为了防止磁芯在较大的磁场强度下饱和而使扼流圈失去作用,扼流圈的磁芯必须采用高频特性好且饱和磁场强度大的恒μ磁芯。
(3)其他:C3为安全电容,能滤除初、次级绕组耦合电容引起的干扰。C8和R7并联在D7两端,能防止D7在高频开关状态下产生自激振荡(振铃现象);此外,在二次侧整流滤波器上串联磁珠也有一定效果。TOPSwitchⅡ由导通变成截止时,在开关电源的一次绕组上就会产生尖峰电压,这是由于脉冲变压器漏感造成的,通常用瞬态电压抑制器(TVS)D6和超快恢复二极管(SRD)D5组成的电路进行钳位,也有用R、C电路的,但效果要稍差一些。
2.2 减小脉冲变压器的漏感及分布电容
对于一个符合绝缘及安全性标准的脉冲变压器,其漏感量应为次级开路时初级电感量的1%~3%。在磁芯结构尺寸、绕线匝数一定的情况下,线圈的绕组排列是减小漏感的重要因素,如图4所示,绕组应按同心方式排列,全部用漆包
线绕制,留有安全边距,且在次级绕组与反馈绕组之间加上强化绝缘层。对于多路输出的开关电源,输出功率最大的那个次级绕组应靠近初级,以增加耦合,减小磁场泄漏。当次级匝数很少时,为了增加与初级的耦合,宜采用多股线平行并绕方式均匀分布在整个骨架上,以增加覆盖面积。在条件允许的情况下,用箔绕组作为次级也是增加耦合的一种好办法。
在开关电源的工作过程中,绕组的.分布电容反复被充、放电,不仅使电源效率降低, ,它还与绕组的分布电感构成LC振荡器,会产生振铃噪声。初级绕组分布电容的影响尤为显著。为减小分布电容,应尽量减小每匝导线的长度,并将初级绕组的始端接漏极,利用一部分初级绕组起到屏蔽作用,减小相邻绕组的分布参数耦合程度。
2.3 屏蔽
抑制辐射噪声的有效方法是屏蔽。用导电良好的材料对电场屏蔽,用导磁率高的材料对磁场屏蔽。将电路置于屏蔽壳中,屏蔽壳可靠接地或中性线,接缝处最好焊接,以保证电磁的连续性。
对于脉冲变压器内部而言的屏蔽,即在一次侧和二次侧间加屏蔽层,简单的办法,用漆包线均匀绕满骨架一层,绕组的一端接高压+V端,另一端浮空。如图5所示,减少了一、二次侧的电场的耦合干扰。此外,将原边绕在骨架最里边,原边起始端与TOPSwitchⅡ的D端连接也是抑制干扰的有效方法。
为防止脉冲变压器的泄漏磁场对相邻电路造成干扰,可把一铜片环绕在变压器外部,构成如图5所示的屏蔽带。该屏蔽带相当于短路环,能对泄漏磁场起到抑制作用,屏蔽带应与地接通。
3. 开关电源的电磁兼容性设计考虑的因素还很多,如印制板的制作、元器件的布局以及各种电源线、信号线的捆扎、配置等,有许多工作要做。全面抑制开关电源的各种噪声会大大提高开关电源的电磁兼容性,使开关电源得到更广泛的应用。
参考文献
1 美国PI公司产品资料,
2 沙占友.单片开关电源的最新应用技术.机械工业出版社,
开关电源的电磁兼容性技术 第7篇
电磁兼容性(EMC)是指电子设备或系统在规定的电磁环境电平下不因电磁干扰而降低性能指标,同时它们本身产生的电磁辐射不大于规定的极限电平,不影响其它电子设备或系统的正常运行,并达到设备与设备、系统与系统之间互不干扰、共同可靠地工作的目的。
世界各国都相应制定了自己的EMC标准。比如国际电工委员会的1EC61000及(C1SPR系列标准、欧洲共同体的FN系列标准、美国联邦通信委的FCC系列标准和我国现行的GT3/T13926系列EMC标准等。随着国际电磁兼容法规的日益严格,产品的电磁兼容性能越来越受到重视。
开关电源作为一种电源设备,其应用越来越广泛。随着电力电子器件的不断更新换代,开关电源的开关频率及开关速度不断提高,但开关的快速通断,引起电压和电流的快速变化。这些瞬变的电压和电流,通过电源线路、寄生参数和杂散的电磁场耦合,会产生大量的电磁干扰。
二、开关电源的干扰源分析
开关电源产生的电磁干扰(EMI),按耦合通道来分,可分为传导干扰和辐射干扰;按噪声干扰源种类来分可分为尖峰干扰和谐波干扰。开关电源在工作过程中所产生的浪涌电流和尖峰电压就形成了干扰源,工频整流滤波使用的大电容充电放电、开关管高频工作时的电压切换以及输出整流二极管的反向恢复电流都是这类干扰源。
三、电磁干扰的抑制措施
电磁干扰由三个基本要素组合而产生:电磁干扰源;对该干扰能量敏感的设备;将电磁干扰源传输到敏感设备的媒介即传输通道或藕合途径。
对开关电源产生的电磁干扰所采取的抑制措施,主要从两个方而考虑:一是减小干扰源的干扰强度;一是切断干扰传播途径。
常用的抗干扰措施包括电路的隔离、屏蔽、接地、加装EMI滤波器以及PCB板的合理布局与布线。
1.电路的隔离
在开关电源中,电路的隔离主要有:模拟电路的隔离、数字电路的隔离、数字电路与模拟电路之间的隔离。主要目的是通过隔离元器件把噪声干扰的路径切断,从而达到抑制噪声干扰的效果。对于开关电源的模拟信号控制系统的隔离,交流信号一般采用变压器隔离,直流信号一般采用线性隔离器(如线性光电耦器)隔离。
数字电路的隔离主要有:脉冲变压器隔离、光电耦合器隔离等。其中数字量输入隔离方式主要采用脉冲变压器隔离、光电耦合器隔离;而数字量输出隔离方式主要采用光电耦合器隔离、高频变压器隔离。
2.屏蔽
屏蔽一般分为两类,一类是静电屏蔽,主要用于防止静电场和恒定磁场的影响;另一类是电磁屏蔽,主要用于防止交变电场、交变磁场以及交变电磁场的影响。屏蔽是抑制开关电源辐射干扰的有效方法。可以用导电良好的材料对电场屏蔽,而用导磁率高的材料对磁场屏蔽。
3.接地
为防止各种电路在工作中产生互相干扰,使之能相互兼容地工作,根据电路的性质,将工作接地分为不同的种类。比如直流地、交流地、数字地、模拟地、信号地、功率地、电源地等。在电路的设计中,应将交流电源地与直流电源地分开,模拟电路与数字电路的电源地分开,功率地与弱电地分开。
4.加装EMI滤波器
开关电源的电磁干扰及抑制技术 第8篇
1 开关电源存在的电磁干扰
开关电源将市电直接整流滤波成为直流高压, 然后通过逆变器转换成低压的高频交流电压, 再经过二次整流和滤波变成所需要的直流低电压。考虑到目前大量应用的开关电源都是采取AC/DC-DC/DC级联的形式, 所以, 给出了具有代表性的开关电源结构, 如图1所示。
开关电源产生电磁干扰最根本的原因, 就是在工作过程中产生了高di/dt和高du/dt, 它们产生的浪涌电流和尖峰电压形成了干扰源;整流电容充电放电, 开关管和输出整流二极管的电压、电流在高频工作时的快速切换都是这类电磁干扰源, 它们通过电源线以共模或差模方式向外传导, 同时, 还向周围空间辐射电磁能量。
由图2可知, 交流电网电压经第一次的整流和滤波平滑后变成直流电压作为DC/DC变换器的输入电压。然后, 通过二次整流滤波得到输出直流电压, 即为所需要的负载电压。采样电压与基准电压进行比较, 将比较差值放大后用以调节开关控制脉冲的占空比, 从而调节变换电路中功率变换开关的通断比来稳定输出电压。
输入/输出电源线布线不合理、PCB布线不合理、结构设计的不合理、电源线输入滤波不合理及CPU或检测电路的设计不合理都会导致系统工作的不稳定。此外, 用于整流及续流的二极管也会产生高频干扰, 成为干扰源。
2 电磁干扰的分类及产生机理
2.1 电磁干扰的产生方式
开关电源首先将工频交流整流为直流, 再逆变为高频, 最后经过整流滤波电路输出, 得到稳定的直流电压, 因此, 自身含有大量的谐波干扰。同时, 由于变压器的漏感和输出二极管的反向恢复电流造成的尖峰, 都形成了潜在的电磁干扰。开关电源中的干扰源主要集中在电压、电流变化大的元器件上。
a.开关电路是开关电源的主要干扰源之一。开关电路是开关电源的核心, 主要由开关管和高频变压器组成。它产生的du/dt具有较大幅度的脉冲, 频带较宽且谐波丰富, 形成关断电压尖峰。电源电压中断会产生与初级线圈接通时一样的磁化冲击电流瞬变, 这种瞬变是一种传导型电磁干扰, 既影响变压器初级, 还会使传导干扰返回配电系统, 造成电网谐波电磁干扰, 从而影响其他设备的安全和经济运行。
b.整流电路中, 在输出整流二极管截止时有一个反向电流, 它恢复到零点的时间与结电容等因素有关。其中, 能将反向电流迅速恢复到零的二极管称为硬恢复特性二极管, 这种二极管在变压器漏感和其他分布参数的影响下将产生较强的高频干扰。
c.高频变压器的初级线圈、开关管和滤波电容构成的高频开关电流环路可能会产生较大的空间辐射, 形成辐射干扰。如果电容滤波容量不足或高频特性不好, 电容上的高频阻抗会使高频电流以差模方式传导到交流电源中形成传导干扰。
d.开关电源工作在高频状态, 因而其分布电容不可忽略。高频电流会通过分布电容流到散热片上, 再流到机壳地, 产生共模干扰;脉冲变压器的初次级之间存在着分布电容, 可在副边作直流输出的两条电源线上产生共模干扰。
2.2 电磁干扰的传输方式
电磁干扰传输有两种方式:一种是传导传输方式, 另一种则是辐射传输方式。传导干扰产生于开关电源的开关管开通与关断。多数小功率开关电源的几何尺寸远小于30 MHz电磁场对应的波长 (空气介质中约为1 m) , 开关电源系统研究的电磁干扰现象属于近场的范围, 研究其电磁干扰时, 主要考虑的是传导干扰, 传导干扰包括差模干扰和共模干扰, 差模干扰是产生于电源正负之问的对称性干扰;共模干扰是产生于电源正负之间的非对称性干扰。
辐射传输是干扰信号通过介质以电磁波的形式向外传播的干扰形式。常见的辐射耦合有三种:a.一个天线发射的电磁波被另一个天线意外地接收, 称为天线对天线的耦合;b.空间电磁场经导线感应而耦合, 称为场对线的耦合;c.两根平等导线之间的高频信号相互感应而形成的耦合, 称为线对线的感应耦合。
3 开关电源电磁干扰抑制技术
开关电源的EMI抑制技术除屏蔽、接地等常用方法外, 一些新技术, 如EMI滤波器技术、共模干扰有源抑制技术、软开关技术、功率管优化驱动技术、扩频调制技术等均有研究和发展。
3.1 滤波技术
在设计和选用滤波器时, 应注意频率特性、耐压性能、额定电流、阻抗特性、屏蔽和可靠性。滤波器的安装正确与否对其插入损耗特性影响很大, 只有安装位置恰当, 安装方法正确, 才能对干扰起到预期的滤波作用。在安装滤波器时应考虑安装位置, 输入输出侧的配线必须屏蔽隔离, 以及高频接地和搭接方法。
3.1.1 无源滤波器技术抑制传导干扰
开关电源产生的EMI以传导干扰为主, 抑制传导EMI最有效的方法是无源滤波技术, 即EMI滤波技术。EMI电源滤波器允许直流或工频信号通过, 对频率较高的其他信号有较大的衰减作用。对于电源输入末端加EMI滤波器, 若滤波器的性能不良、滤波频段选择不当、电路布线不合理、分布参数产生影响等均可导致传导干扰电压过大, 可通过选择品质优良滤波器、陷波器以及精心布线来抑制电源输入端的干扰电压。对于开关电源输出电压端, 通常也加滤波器和铁氧体磁环来抑制输出电压端的射频干扰。
无源滤波器是由电感、电容、电阻元件组成的无源网络, 以抑制并衰减干扰信号沿线路的传播。对于开关电源来说, 电源线是电磁干扰传入、传出设备的主要途径。为防止这两种情况的发生, 必须在设备的电源接口安装无源滤波器。它只允许电源频率通过, 而对高于电源频率的电磁干扰将进行很大的衰减。
无源滤波器的直接作用是解决传导发射。但由于电源线上的传导发射会导致导线的辐射发射, 因此, 无源滤波器对减小设备的辐射发射也十分重要, 开关电源中应用的无源滤波器的原理结构, 如图3所示。
在普通的滤波器中, 往往仅安装一个共模扼流圈, 利用其漏电感产生适量的差模电感, 起到对差模电流的抑制作用。有时, 设计者可人为地增加共模扼流圈的漏电感, 提高差模电感量。共模扼流圈的电感量取决于要滤除的干扰频率, 即频率越低, 需要的电感量越大。
3.1.2 有源滤波技术抑制共模干扰
共模干扰的有源滤波技术是一种从噪声源采取措施抑制共模干扰的方法。其基本思路是设法从主回路中取出一个与EMI信号大小相等、相位相反的补偿信号, 去平衡原来的EMI信号, 以达到降低EMI水平的目的。
图4所示电路是一种有源滤波器电路。它是利用晶体管的电流放大作用, 通过把发射极的电流折合到基极, 在基极回路来滤波。R1和C2组成的滤波器使基极纹波很小, 这样射极纹波也很小。由于 C2的容量小于 C3, 减少了电容的体积。这种方式仅适合低压小功率电源的情况。
3.2 屏蔽技术
屏蔽是抑制开关电源辐射骚扰的有效办法。屏蔽一般分为两种, 一种是静电屏蔽, 主要用于防止静电场和恒定磁场的影响;另一种是电磁屏蔽, 主要用于防止交变电场、磁场以及交变电磁场的影响。
采用屏蔽技术可以有效地抑制开关电源的电磁辐射干扰, 例如, 功率开关管和输出二极管通常有较大的功率损耗, 为了散热往往需要安装散热器或直接安装在电源底板上。器件安装时需要导热性能好的绝缘片进行绝缘, 这就使器件与底板和散热器之间产生了分布电容, 开关电源的底板是交流电源的地线, 因而通过器件与底板之间的分布电容将电磁干扰耦合到交流输入端产生共模干扰。解决这个问题的办法是采用两层绝缘片之间夹一层屏蔽片, 并把屏蔽片接到直流地上, 切断了射频干扰向输入电网传播的途径。
为了抑制开关电源产生的辐射和电磁干扰对其他电子设备的影响, 可按照对磁场屏蔽的方法来加工屏蔽罩, 然后将整个屏蔽罩与系统的机壳和地连接为一体, 就能对电磁场进行有效的屏蔽。
3.3 软开关技术
近年来, 软开关技术引起广泛兴趣, 先后提出了谐振变换器、准谐振变换器、零开关PWM变换器、零转换PWM变换器等多种软开关技术。零开关PWM变换器利用谐振实现换相, 换相完毕后仍采用PWM工作方式, 从而既能克服硬开关PWM在开关过程中的缺陷, 又能保留硬开关PWM变换器的低稳态损耗和低稳态应力的优点。
通常认为, 软开关技术的应用有助于电磁干扰水平的降低, 但软开关技术中通常需要增加辅助开关电路, 这些高di/dt和du/dt的支路对电网入线侧的近场干扰势必增加电路的EMI。因此, 目前不能认定采用软开关技术就一定可以改善开关电源的EMI电平, 必须做进一步的研究。
3.4 扩频调制技术
对于一个周期信号尤其是方波来说, 其能量主要分布在基频信号和谐波分量中, 谐波能量随频率的增加呈级数降低。由于n次谐波的带宽是基频带宽的n倍, 通过扩频技术将谐波能量分布在一个更宽的频率范围上, 基频和各次谐波能量减少, 使其发射强度得以降低。要在开关电源中采用扩频时钟信号, 需要对该电源开关脉冲控制电路输出的脉冲信号进行调制, 形成扩频时钟, 见图5。与传统的方法相比, 采用扩频技术优化开关电源EMI既高效又可靠, 无需增加体积庞大的滤波器件和繁琐的屏蔽处理, 也不会对电源的效率带来任何负面影响。
3.5 PCB设计技术
印制电路板 (PCB) 抗干扰技术主要包括 PCB布局、布线和接地, 其目的是减少 PCB的电磁辐射和PCB上电路间的串扰。减少辐射干扰的关键是减少通路面积, 即开关电源的元器件在布局上要紧密排列印制电路板布线, 布线时, 应注意对电场与磁场耦合的抑制, 尽量增大线间距离, 降低敏感线路的输入阻抗, 减小干扰源和敏感电路的环路面积, 采用静电屏蔽等。
3.6 接地技术