正文内容
平行四边形判定习题
来源:火烈鸟
作者:开心麻花
2025-09-19
1

平行四边形判定习题(精选6篇)

平行四边形判定习题 第1篇

6.2平行四边形的判定(1)

一.选择题:

1.能识别四边形ABCD是平行四边形的题设是()

A.AB∥CD,AD=BC

B.∠A=∠B,∠C=∠D

C.AB=CD,AD=BC

D.AB=AD,CB=CD

2.点A,B,C,D在同一平面内,从①AB∥CD,②AB=CD,③BC∥AD,④BC=AD这四个条件中任选两个,能使四边形ABCD是平行四边形的选法有()

A.3种

B.4种

C.5种

D.6种

3.平行四边形的一边长为6cm,周长为28cm,则这条边的邻边长是()

A.22cm

B.16cm

C.11cm

D.8cm

二.填空题:

4.在□ABCD中,已知AB+BC=20,且AD=8,则BC=,CD=

5.用20cm长的铁丝围成一个平行四边形,使长边比短边长2cm,则它的长边长为,短边长为

6.□ABCD中,∠A的2倍与∠B的补角互为余角,那么∠A=

7.在平行四边形ABCD中,E、F分别是AD、BC的中点,则四边形EBFD是

8.在四边形ABCD中,若AB=CD,再添加一个条件为__________,就可以判定四边形ABCD为平行四边形

三.解答题:

9.如图,□ABCD中,AC是对角线,BM⊥AC于M,DN⊥AC于N,四边形BMDN是平行四边形吗?为什么?

6.2

6.2平行四边形的判定(2)

一.选择题:

1.下列结论正确的是()

A.对角线相等且一组对角相等的四边形是平行四边形

B.一边长为5cm,两条对角线长分别是4cm和6cm的四边形是平行四边形

C.一组对边平行且一组对角相等的四边形是平行四边形

D.对角线相等的四边形是平行四边形

2.不能判定四边形ABCD是平行四边形的条件是()

A.AB=CD,AD=BC

B.AB∥CD,AB=CD

C.AB=CD,AD∥BC

D.AB∥CD,AD∥BC

3.如图,AC、BD是□ABCD的对角线,AC和BD相交于点O,AC=4,BD=5,BC=3,则△BOC的周长是()

A.7.5

B.12

C.8.5

D.9

4.下列条件中,能判定四边形是平行四边形的条件是()

A.两条对角线互相垂直

B.两条对角线互相垂直且相等

C.两条对角线相等且交角为60°

D.两条对角线互相平分

5.下列说法属于平行四边形判定方法的有()

①两组对边分别平行的四边形是平行四边形

②平行四边形的对角线互相平分

③两组对边分别相等的四边形是平行四边形

④平行四边形的每组对边平行且相等

⑤两条对角线互相平分的四边形是平行四边形

A.5个

B.4个

C.3个

D.2个

二.填空题:

6.如图,在□ABCD中,对角线AC、BD相交于点O,E、F分别在OB、OD上,且OE=OF,又因为OC=,所以四边形AECF是,理由是    .

7.若四边形ABCD中,AC,BD相交于点O,要判定它为平行四边形,从角的关系看应满足___________,从对角线的关系看应满足_______________

8.如图所示,平行四边形ABCD中,E、F是对角线BD上两点,连接AE、AF、CE、CF,添加_____条件,可以判定四边形AECF是平行四边形.(填一个符合要求的条件即可)

三.解答题:

9.如图,▱ABCD中,O是对角线BD的中点,过点O的直线分别交AD、BC于E、F两点,求证:AE=CF.

10.如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点.

求证:四边形EFGH是平行四边形;

平行四边形判定习题 第2篇

一、基础部分

1、两组对角的四边形是平行四边形;

2、两组对边或的四边形是平行四边形;

3、对角线的四边形是平行四边形.

4、一组对边的四边形是平行四边形.

5、下面给出了四边形ABCD中∠A,∠B,∠C,∠D的度数之比,其中能判定四边形ABCD是平行四边形的是()

A.1:2:3:4B.2:2:3:3C.2:3:2:3D.2:3:3:2

6、下面给出的条件中,能判定一个四边形是平行四边形的是()

A.一组对边平行,另一组对边相等B.一组对边平行,一组对角互补

C.一组对角相等,一组邻角互补D.一组对角相等,另一组对角互补

7、在下面给出的条件中,能判定四边形ABCD是平行四边形的是()

A.AB=BC,AD=CDB.AB∥CD,AD=BC

C.AB∥CD,∠B=∠DD.∠A=∠B,∠C=∠D

8、如图,在平行四边形ABCD中,EF∥AD,MN∥AB,EF,MN相交于点P,则除平行四边形ABCD外,图中共有平行四边形()

A.4个B.6个C.8个D.10个

9、用两个全等的三角形按不同的方法拼成四边形,在这些拼出的四边形中,平行四边形最多有()A.1个B.2个C.3个D.4个

10、在下列条件中,能判定四边形ABCD为平行四边形的是()

A.AB=AD,CB=CDB.AB∥CD,AD=BC

C.AB=CD,AD=BCD.∠A=∠B,∠C=∠D

11、如图19-1-33,在ABCD中,下列各式不一定正确的是()。

A.∠1+∠2=180°B.∠2+∠3=180°C.∠3+∠4=180°D.∠2+∠4=180°

12、判断:一组对边平行,一组对边相等的四边形是平行四边形。()

13、判断:一组对边平行且相等的四边形是平行四边形.()

14、判断:两组邻角相等的四边形是平行四边形.()

15、判断:两组邻角互补的四边形是平行四边形.()

16、判断:对角线互相垂直的四边形是平行四边形()

17、判断:一组邻边相等且一条对角线平分另一条对角线的四边形是平行四边形。()

18、判断:平行四边形一组对边中点的连线与另一组对边平行且相等.()

19、判断:对角线互相垂直且相等的四边形是平行四边形.()

二、证明题(20-23为4号专属题、22-24为3号专属题、24-27为2号专属题、25-28为1号专属题)

20、已知:如图,在平行四边形ABCD中,E,F分别是AB,DC上的两点,且AE=CF.

求证:BD,EF互相平

21、已知:如图,在平行四边形ABCD中,点M,N在对角线AC上,且AM=CN.

求证:四边形BMDN是平行四边形.

22、已知:如图,在平行四边形ABCD中,E,F分别是AB,CD上的两点,且AE=CF,AF,DE相交于点M,BF,CE相交于点N.

求证:四边形EMFN是平行四边形.(要求不用三角形全等来证)

23、已知:如图,在平行四边形ABCD中,点G,H分别是AB,CD的中点,点E,F在AC上,且AE=CF.

求证:四边形EGFH是平四边形.

C24、已知:如图,在平行四边形ABCD中,AB=2BC,E,F在直线BC上,且BE=BC=CF.求证:AF⊥DE.

25、已知:如图,△ABC中,D是AB的中点,E是AC上的一点,EF∥AB,DF∥BE.

(1)猜想:DF与AE间的关系是______.

(2)证明你的猜想.

26.如图19-1-29,ABCD中,对角线AC、BD相交于点O,过点O作两条直线分别与AB,BC,CD,AD交于G,F,H,E四点。求证:四边形EGFH是平行四边形。

27.如图19-1-30,分别以△ABC的三边为边长,在BC的同侧作等边三角形ABD,等边三角形BCE,等边三角形ACF,连接DE,EF。求证:四边形ADEF是平行四边形。

平行四边形判定习题 第3篇

活动一:温故而知新 (完成时段:课前用时:5分钟) (先独立回顾, 再小组交流完成)

1. 平行四边形的定义是什么?

______________的四边形是平行四边形。

2. 平行四边形有哪些性质?

______________________________

3.你能写出上述性质的逆命题吗?

________________

活动二:平行四边形的判定探究 (完成时段:课堂用时:15分钟) (先独立思考, 再小组合作完成)

利用课前准备的一些材料, 你能动手做一个平行四边形模型吗? (用一长一短两组木条, 或长短不一的两根木条及橡皮筋想办法拼成一个平行四边形。)

实验结论:______

活动三:判定定理的证明。

已知:在四边形ABCD中, AB=CD, AD=BC。

求证:四边形ABCD是平行四边形。

已知:在四边形ABCD中, 对角线AC、BD相交于点O且AO=CO, BO=DO。

求证:四边形ABCD是平行四边形。

二、导学案各部分的设计意图说明

活动一:引发思考, 提出议题。

1.“回忆”平行四边形定义及性质。

定义:具有性质和判定的双重作用。

性质:分别从边、角、对角线三个不同角度说明。

关注学生能否有条理、有序、完整而准确地叙述这些性质, 做到不重复, 不遗漏。

温故而知新, 利用平行四边形的性质与判定之间的互逆的关系, 引出新知。

2.“猜想”由平行四边形的边、角、对角线之间的关系能否得出平行四边形的判定方法呢?在这里, 要鼓励学生大胆猜想, 假设结论。

活动二:实验论证, 得出判定。

“实验”动手操作, 感知结论。

用一长一短两组木条, 或长短不一的两根木条及橡皮筋想办法拼成一个平行四边形, 并用数学语言表达这些结论。

关注学生的操作过程, 并进行适当指导;同时关注学生语言表述是否简明、准确。学生通过自己动手、实验, 完成导学案上的内容, 看看有几种方法可以判断一个四边形是平行四边形?这一环节让学生观察、猜想, 经历了知识的发展形成的过程, 体验了“发现”知识的快乐, 变被动接受为主动探究。

【设计意图】培养学生动手能力, 让学生亲身体验知识的形成过程。

活动三:理论证明, 得出判定。

1.“证明”理论知识, 证明结论。

让学生对实验操作的结论从中选取1~2条, 结合图形, 加以证明。运用三角形全等的知识和平形四边形的定义进行证明。

证明命题是一个难点, 知识的真正获得不是靠知者的“告诉”, 而是在于学习者的亲身体验所得, 因此本课教师采用了小组合作探究解决问题。这一过程让学生主动思考、互相交流、共同探究解决问题的方法, 给学生营造了探究新知的氛围, 最后由教师引导, 由学生到前面板演、讲解你用什么方法判断一个四边形是平行四边形, 真正将课堂这一主阵地交给学生, 让学生继续动手、实验, 把证明平行四边形的问题逐步转化为证明线平行、角相等、三角形全等, 体现化归的思想。也使学生有一个不断的自我矫正的过程, 突破了难点。

【设计意图】使学生从感性认识上升到理性认识。

2.“归纳”平行四边形判定定理。

“你能画出图形, 用符号语言表述这些定理吗?”“判定定理与性质定理有何区别与联系?”“你现在学会了几种平行四边形的判定方法?”由这一连串的问题, 进一步加深学生对判定定理的理解。

【设计意图】通过文字语言、图形语言和符号这三种数学语言的表述, 很好地体现了数形结合思想, 同时培养了学生的符号感。

学生在完成以上的导学案后, 通过小组合作交流, 接下来便是他们展示的时间。把导学案分五个版块, 由五个组分别负责展示。他们画图、板演、分析、讲解、质疑、总结方法、归纳解题技巧。不仅收获着知识, 还收获着成功与快乐。老师及时进行追问, 使学生的理解更加深刻, 增强展示的效果。

三、教学设计反思

“学生是数学学习的主人, 教师是整个活动的组织者, 参与者与合作者”。因此, 在设计时, 我注意了以下几点:激发学生的兴趣;激活学生的思维;关注学生的互动;注重师生角色的转变。一方面, 教师由传统模式下的“主演”变为“导演”, 成为学生学习的伙伴, 另一方面, 学生的学习方式有了根本转变。在本节课中, 他们积极参与自学、交流、合作、展示、补充、互评等学习过程。“自主、合作、探究”的学习方式, 给人留下了深刻的印象, 学生主体地位得到了充分落实。

摘要:《平行四边形的判定》是人教版八年级下平行四边形的判定的第一课时。教师在教学设计时, 应开展有效而有趣的活动使学生有所体验, 要重视实践操作、测量, 经历观察、实验、猜想、证明等数学活动, 突出探究性, 使学生亲历“做数学”的过程。而教师只需在必要时给予一定的点拨、引导。通过钻研教材, 作者编写了一份导学案。通过它不但让学生明确了本节课的学习目标, 还起到了提纲挈领的作用。

“平行四边形的判定”教学设计 第4篇

平行四边形的判定

教学目标

知识与技能:掌握平行四边形的判定方法,并能简单运用。

过程与方法:学生经历动手操作、观察、探究、归纳、总结等过程,获得用数学的思想方法处理问题的能力。

情感、态度与价值观:①通过学生的合作交流,培养学生的集体意识和合作意识;②使学生养成自主探究、合作探究、自觉运用三种数学语言的良好习惯,培养学习数学的兴趣。

教学重点

①平行四边形的判定方法的得出过程。

②会用平行四边形的判定方法解决问题。

教学难点

理解判定方法,以及判定方法的应用。

教学工具

课件;师生各准备两个全等的三角形纸板。

教学过程

一、温故蕴新

教学内容:

出示第一个问题:两个全等的三角形能否拼成一个平行四边形?(学生动手拼图)

师生活动:

通过学生动手拼平行四边形,合作交流,个性展示。活动时间要充足,保证学生能够充分思考。教师及时点播、引导学生理清解决问题中用到的知识点和思想方法。

设计意图:

这个环节的目的是通过一个拼图活动复习本课要用到的基本知识点和思想方法。有利于学生顺利找到判定方法。例如:平行四边形的定义、通过做辅助线将四边形的问题转化成三角形的问题来解决的思想方法。

二、借故生新

教学内容:

出示第二个问题探究判定定理:两组对边分别相等的四边形是平行四边形。

师生活动:

学生观察教具演示,做猜想,并证明,感受方法的多样性。

教师演示教具,引导学生观察,点拨、订正。教师演示速度要适当,不能太快,留给学生仔细观察,以及充分思考的时间。

每个环节都让学生经历“自主探究—合作交流—教师点拨—订正规范—返悟小记”的知识发展过程。

设计意图

本环节的主要目的有两个:

1.针对本节的知识点而形成的典型例题进行讲解分析,让学生知道做这种题型的思路是什么。因此,在这儿要让学生充分的暴露不足和缺陷,教师及时的订正,已形成典型例题的基本解题方法和思想。为以后学生做题有法可循、有据可依打下基础。

2.以题目为载体,总结做题的方法,渗透基本的数学思想。例如:本节课的典例中,逐渐引导学生由“定义是一种判定方法”去解决问题,整个过程充分引导学生暴露问题的思考过程。使学生感觉思考的可以看得见摸得着并不是那么神秘,使学生克服思维的恐惧。在此环节,逐步渗透解题的思想,以期随着时间的推移使之慢慢形成习惯,使以后的学习事半功倍。

思考

要注意学生思路的连贯性,设计问题要有很好的衔接性,一个题目都有明确的设计意图,而不是任何一个题目都可以去做,所以它不是一个单独的题目而是一个桥梁,让学生思路畅通,直达目的,而不是拖泥带水,这样学生才会理解的扎实到位。

三、培故孕新

教学内容:

出示第三个问题,复习巩固两种判定方法,并得出第三种判定方法:一组对边平行且相等的四边形是平行四边形。

师生活动:

学生观察教师在黑板上的尺规作图过程,确定几何图形满足的条件,思考平行四边的判定方法。学生合作、教师点拨、学生总结形成方法

设计意图:

本环节主要是检验学生对“平行四边形的定义”和“两组对边分别相等的四边形是平行四边形”这两种判定方法的理解,同时又是第三种判定方法“一组对边平行且相等的四边形是平行四边形”的证明得出过程。同时又是“转化”这一思想方法的运用过程

四、课堂小结

教学内容:

回顾本节课的学习历程,你学习了哪些知识?知道了哪些思想方法?

师生活动:

教师总结这节课的知识点的研究方法和解决问题的研究过程

设计意图:

让学生通过本环节总结知识体系以及解决问题的方法,形成知识的沉淀与积累。

本节课的教学设计特色:

1.注重情境的创设和直观教具的作用

本节课内容比较抽象,针对这一特点,设计了多个问题情境,动手拼平行四边形,观察老师的画图过程等,以学生喜欢的学习方式作为切入点,使学生感受到边的位置与大小影响四边形的形状。按照“动手—观察—发现—猜想—验证—总结概括”的模式展开教学活动,让学生主动进行动手、观察、猜测、验证、交流与反思,让学生在学习数学的过程中,用自己的亲身体验来感悟知识的形成过程。创设问题情境,不仅使学生掌握数学知识和技能,而且以境生情,使学生更好的体验教学中的情景,使原有的枯燥、抽象的数学知识变得生动形象、饶有趣味。

2.注重发挥小组合作意识

本节课多次运用小组合作的学习方式,在学生需要的时候提供给他们合作交流的时间。例如:在拼平行四边形的时候,先由大家自主探索,再组内交流,让大家思考的结果“资源共享”,认识会更全面、更深刻,总结出的拼法多、想法多。这样,学生通过与他人沟通、交流、合作,给对方提供有用的信息,自己也认真听取他人的建议与意见,取长补短,从而掌握知识,认清事物本质,并获得数学活动的经验。

3.注重发挥直观教具的优势

课前师生都准备了学具、教具,制作学具本身就提高了学生的动手能力,同时也促进了学生的动手、动脑之间的协调能力。课堂上,学生动手拼平行四边形,感受边边角角与图形的联系,使抽象的问题直观化,从而激发了学生学习的兴趣和探究的欲望。如:在“温故蕴新”这一环节,学生很难想象三角形拼接的各种情况,但有了实物——两个全等的三角板,问题就变得简单多了,而且学生能够总结出多个规律,这是凭空想象所做不到的。

本节课的设计是从学生已有的知识与经验出发,遵循学生的认知规律,在学生自主探究、讨论交流的基础上进行归纳总结,使学生对知识的认识从感性上升到理性。以问题为载体,在探究平行四边形的判定方法的过程中,丰富了学生数学活动的经验,让学生学会探索、学会交流、学会学习。

(作者单位 山东省博兴县吕艺镇中学)

平行四边形判定习题 第5篇

1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;

(2)若 M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状

2.如图,▱AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D. 求证:四边形ABCD是平行四边形.

3.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;

(2)若AC与BD交于点O,求证:AO=CO.

4.已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.

5.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明. 6.如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点. 求证:四边形MFNE是平行四边形.

7.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.

8.已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?

9.如图:已知D、E、F分别是△ABC各边的中点,求证:AE与DF互相平分.

10.已知:如图,在▱ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.求证:四边形ABOE、四边形DCOE都是平行四边形.

11.如图,已知四边形ABCD中,点E,F,G,H分别是AB、CD、AC、BD的中点,并且点E、F、G、H有在同一条直线上. 求证:EF和GH互相平分. 12.已知:如图所示,平行四边形ABCD的对角线AC,BD相交于点O,EF经过点O并且分别和AB,CD相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形.

13.如图,已知在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;

(2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)

14.如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.

(1)求证:AF=CE;

(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论.

15.如图平行四边形ABCD中,∠ABC=60°,点E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BF,垂足为点F,DF=2(1)求证:D是EC中点;(2)求FC的长.

16.如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.

(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD. 17.如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)请判断四边形EFGH的形状?并说明为什么;

(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?

18.如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.(1)当AB≠AC时,证明:四边形ADFE为平行四边形;

(2)当AB=AC时,顺次连接A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.

19.如图,以△ABC的三边为边,在BC的同侧分别作三个等边三角形即△ABD、△BCE、△ACF,那么,四边形AFED是否为平行四边形?如果是,请证明之,如果不是,请说明理由.

20.如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为t.(1)求CD的长;

(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;

平行线的判定及性质习题课 第6篇

一、概念复习与回顾

1、两条直线平行有哪些性质吗? ⑴根据平行线的定义: ⑵平行线的性质公理: ⑶平行线的性质定理1: ⑷平行线的性质定理2: ⑸平行线间的距离.

2、判定两条直线平行有哪几种方法吗? ⑴平行线的定义: ⑵平行线的传递性: ⑶平行线的判定方法1: ⑷平行线的判定定理2: ⑸平行线的判定定理3:

二、练习、如图,已知:∠1=∠2,∠D=50°,求∠B的度数.

2、已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H.问CD与AB有什么关系?

3、如图,已知直线AB∥CD,求∠A+∠C与∠AEC的大小关系并说明理由.

4、如图所示,E在直线DF上,B在直线AC上,若∠AGB=∠EHF,∠C=∠D,试判断∠A与∠F的关系,并说明理由.

5、如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系?为什么?

6、如图,已知∠A=∠F,∠C=∠D.试问BD是否与CE平行?为什么?

7、已知:如图BE∥CF,BE、CF分别平分∠ABC和∠BCD,求证:AB∥CD

8、如图,已知AB∥CD,AE平分∠BAD,DF平分∠ADC,那么AE与DF有什么位置关系?试说明理由.

9、已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,求证:AB∥CD.

10、完成下列推理说明:

如图,已知AB∥DE,且有∠1=∠2,∠3=∠4,试说明BC∥EF.

11、如图AB∥DE,∠1=∠2,问AE与DC的位置关系,说明理由.

12、如图,MN,EF是两面互相平行的镜面,一束光线AB照射到镜面MN上,反射光线为BC,则∠1=∠2.

(1)用尺规作图作出光线BC经镜面EF反射后的反射光线CD;(2)试判断AB与CD的位置关系;(3)你是如何思考的.

13、已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.

14、:已知:如图,EF⊥CD于F,GH⊥CD于H. 求证:∠1=∠3.

15、如图所示,已知∠1=72°,∠2=108°,∠3=69°,求∠4的度数.

16、如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.

17、如图,BD是∠ABC的平分线,ED∥BC,∠FED=∠BDE,求证EF也是∠AED的平分线.

18、如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D. 试说明:AC∥DF.

19、已知,如图,∠1=∠ACB,∠2=∠3,求证:∠BDC+∠DGF=180°.

相关文章
表演人才范文

表演人才范文

表演人才范文(精选11篇)表演人才 第1篇六七岁至十一二岁是学龄初期, 即相当于儿童接受小学教育的年龄。这一时期少儿的主要行为活动是学...

2
2025-09-20
保安班长月总结

保安班长月总结

保安班长月总结(精选6篇)保安班长月总结 第1篇篇一:保安班长年终总结个人总结光阴似箭日如梭,转眼间半年已经过去。回顾我们保安队在近...

1
2025-09-20
班主任有关工作培训心得

班主任有关工作培训心得

班主任有关工作培训心得(精选15篇)班主任有关工作培训心得 第1篇20**年8月我有幸在市电大参加了“仙桃市第一期小学骨干班主任高级研修班...

1
2025-09-20
部编版一年级四季教案

部编版一年级四季教案

部编版一年级四季教案(精选6篇)部编版一年级四季教案 第1篇《四季》文清路小学 刘明霞教学目标:1、认识 9个生字和言字旁,虫字旁和折...

1
2025-09-20
办公室文秘的岗位职责有哪些

办公室文秘的岗位职责有哪些

办公室文秘的岗位职责有哪些(精选18篇)办公室文秘的岗位职责有哪些 第1篇1、在董事会的领导下主持办公室的全面工作,负责办公室的日常工...

3
2025-09-20
八年级上册第1课鸦片战争

八年级上册第1课鸦片战争

八年级上册第1课鸦片战争(精选12篇)八年级上册第1课鸦片战争 第1篇《鸦片战争》教学设计【教学目标】1、英国向中国走私鸦片及危害;林则...

2
2025-09-20
表面粗糙度测量仪的工作原理

表面粗糙度测量仪的工作原理

表面粗糙度测量仪的工作原理(精选10篇)表面粗糙度测量仪的工作原理 第1篇表面粗糙度测量仪的工作原理分析及其改进方案阳旭东(贵州工业大...

1
2025-09-20
宾馆改造可行性报告

宾馆改造可行性报告

宾馆改造可行性报告(精选8篇)宾馆改造可行性报告 第1篇第一章 总论1.1 项目名称及承办单位项目名称:宝地宾馆改扩建项目 承办单位:...

1
2025-09-20
付费阅读
确认删除?
回到顶部