正文内容
平行线的判定经典习题
来源:开心麻花
作者:开心麻花
2025-09-19
1

平行线的判定经典习题(精选11篇)

平行线的判定经典习题 第1篇

平行线的性质与判定证明题、解答题习题课

一、概念复习与回顾

1、两条直线平行有哪些性质吗? ⑴根据平行线的定义: ⑵平行线的性质公理: ⑶平行线的性质定理1: ⑷平行线的性质定理2: ⑸平行线间的距离.

2、判定两条直线平行有哪几种方法吗? ⑴平行线的定义: ⑵平行线的传递性: ⑶平行线的判定方法1: ⑷平行线的判定定理2: ⑸平行线的判定定理3:

二、练习、如图,已知:∠1=∠2,∠D=50°,求∠B的度数.

2、已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H.问CD与AB有什么关系?

3、如图,已知直线AB∥CD,求∠A+∠C与∠AEC的大小关系并说明理由.

4、如图所示,E在直线DF上,B在直线AC上,若∠AGB=∠EHF,∠C=∠D,试判断∠A与∠F的关系,并说明理由.

5、如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系?为什么?

6、如图,已知∠A=∠F,∠C=∠D.试问BD是否与CE平行?为什么?

7、已知:如图BE∥CF,BE、CF分别平分∠ABC和∠BCD,求证:AB∥CD

8、如图,已知AB∥CD,AE平分∠BAD,DF平分∠ADC,那么AE与DF有什么位置关系?试说明理由.

9、已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,求证:AB∥CD.

10、完成下列推理说明:

如图,已知AB∥DE,且有∠1=∠2,∠3=∠4,试说明BC∥EF.

11、如图AB∥DE,∠1=∠2,问AE与DC的位置关系,说明理由.

12、如图,MN,EF是两面互相平行的镜面,一束光线AB照射到镜面MN上,反射光线为BC,则∠1=∠2.

(1)用尺规作图作出光线BC经镜面EF反射后的反射光线CD;(2)试判断AB与CD的位置关系;(3)你是如何思考的.

13、已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.

14、:已知:如图,EF⊥CD于F,GH⊥CD于H. 求证:∠1=∠3.

15、如图所示,已知∠1=72°,∠2=108°,∠3=69°,求∠4的度数.

16、如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.

17、如图,BD是∠ABC的平分线,ED∥BC,∠FED=∠BDE,求证EF也是∠AED的平分线.

18、如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D. 试说明:AC∥DF.

19、已知,如图,∠1=∠ACB,∠2=∠3,求证:∠BDC+∠DGF=180°.

20、如图,EF∥AD,∠1=∠2,∠BAC=80°.求∠AGD的度数.

平行线的判定经典习题 第2篇

2.已知:如图5, DE∥BC,CD是∠ACB的平分线,∠B=700,∠ACB=500.求∠BDC的度数.A

E D

B C图

53.如图,台球运动中,如果母球P击中边点A,经桌边反弹后击中相邻的另一桌边的点B,再次反弹.那么母球P经过的路线BC与PA一定平行.请说明理由.

4.如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB、∠PCD的关系,请你从所得到的关系中任选一个加以说明.(适当添加辅助线,其实并不难)

5.已知:如图⑿,CE平分∠ACD,∠1=∠B,求证:AB∥CE

6.如图:∠1=53,∠2=127,∠3=53,试说明直线AB与CD,BC与DE的位置关系。

7.如图:已知∠A=∠D,∠B=∠FCB,能否确定ED与CF的位置关系,请说明理由。

8.已知:如图,,且.求证:EC∥DF.9.如图10,∠1∶∠2∶∠3 = 2∶3∶4,∠AFE =60°,∠BDE =120°,写出图中平行的直线,并说明理由. AE F2

3B D C

图10

10.如图11,直线AB、CD被EF所截,∠1 =∠2,∠CNF =∠BME。求证:AB∥CD,MP∥NQ.

E

MB A 1PN C D 2Q F图11

11.已知:如图:∠AHF+∠FMD=180°,GH平分∠AHM,MN平分∠DMH。

求证:GH∥MN。

12.如图,已知:∠AOE+∠BEF=180°,∠AOE+∠CDE=180°,求证:CD∥BE。

直线与平面平行的判定 第3篇

本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理.本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大.

二、教学目标

通过直观感知———观察———操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理.培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力.让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感.

三、教学重点与难点

重点是判定定理的引入与理解,难点是判定定理的应用及立体几何空间感、空间观念的形成与逻辑思维能力的培养.

四、教学过程设计

(一)知识准备、新课引入

提问1:根据公共点的情况,空间中直线a和平面有哪几种位置关系?并完成下表:(多媒体幻灯片演示)

我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为.

提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径.

(二)判定定理的探求过程

1.直观感知

提问:根据同学们日常生活的观察,你们能感知到并举出直线与平面平行的具体事例吗?

生1:列举日光灯与天花板,站立的人与墙面.

生2:门转动到离开门框的任何位置时,门的边缘线始终与门框所在的平面平行(由学生到教室门前作演示),然后教师用多媒体动画演示.

2.动手实践

教师取出预先准备好的直角梯形泡沫板演示:当把互相平行的一边放在讲台桌面上并转动,观察另一边与桌面的位置给人以平行的感觉,而当把直角腰放在桌面上并转动,观察另一边与桌面给人的印象就不平行.又如老师直立讲台,则大家会感觉到老师(视为线)与四周墙面平行,如老师向前或后倾斜则感觉老师(视为线)与左、右墙面平行,如老师向左、右倾斜,则感觉老师(视为线)与前、后墙面平行(老师也可用事先准备的木条放在讲台桌上作上述情形的演示).

3.探究思考

(1)上述演示的直线与平面位置关系为何有如此的不同?关键是什么因素起了作用呢?通过观察感知发现直线与平面平行,关键是三个要素:(1)平面外一条线,(2)平面内一条直线,(3)这两条直线平行.

(2)如果平面外的直线a与平面内的一条直线b平行,那么直线a与平面平行吗?

4.归纳确认(多媒体幻灯片演示)

直线和平面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线和这个平面平行.

简单概括:(内外)线线平行,线面平行.

符号表示:

温馨提示:

作用:判定或证明线面平行.

关键:在平面内找(或作)出一条直线与平面外的直线平行.

思想:空间问题转化为平面问题

(三)定理运用,问题探究(多媒体幻灯片演示)

1.作一作

设a,b是二异面直线,则过a,b外一点p且与a,b都平行的平面存在吗?若存在请画出平面,不存在说明理由?

先由学生讨论交流,教师提问,然后教师总结,并用准备好的羊毛针、铁线、泡沫板等演示平面的形成过程,最后借多媒体展示作图的动画过程.

2.证一证

例(见课本60页例1):已知空间四边形ABCD中,E,F分别是AB,AD的中点,求证:EF//平面BCD.

变式一空间四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA中点,连接EF,FG,GH,HE,AC,BD请分别找出图中满足线面平行位置关系的所有情况.(共6组线面平行)

变式二在变式一的图中作PQ//EF,使P点在线段AE上,Q点在线段FC上,连接PH,QG,并继续探究图中所具有的线面平行位置关系?(在变式一的基础上增加了4组线面平行),并判断四边形EFGH,PQGH分别是怎样的四边形,说明理由.

4.练一练

练习1:见课本6页练习1、2

练习2:将两个全等的正方形ABCD和ABEF拼在一起,设M,N分别为AC,BF中点,求证:MN//平面BCE.

变式:若将练习2中M,N改为AC,BF分点且AM=FN,试问结论仍成立吗?试证之.

(四)总结

先由学生口头总结,然后教师归纳总结(由多媒体幻灯片展示):

1.线面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线与这个平面平行.

2.定理的符号表示:

简述:(内外)线线平行则线面平行

3.定理运用的关键是找(作)面内的线与面外的线平行,途径有:取中点利用平行四边形或三角形中位线性质等.

五、教学反思

平行线的判定练习题(有答案) 第4篇

篇一:(913)平行线的判定专项练习60题(有答案)ok 平行线的判定专项练习60题(有答案)

1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.

2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.

3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.

4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.

5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由.

6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.

平行线的判定---

7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.

8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.

9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.

10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.

11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.

12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.

平行线的判定---

13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗?为什么?

14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.

15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.

16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.

17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.

18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行?为什么?

平行线的判定---

19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由.

20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.

21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗?为什么?

22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF平分∠ABD,DG平分∠CDE,求证:BF∥DG.

23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.

24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD.

25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC. 平行线的判定---

26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.

27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.

28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.

29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.

30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.

31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.

平行线的判定---

篇二:七年级平行线的判定与性质练习题带答案

平行线测试题

姓名:

一、选择题

1.下列命题中,不正确的是____ [ ] A.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行

B.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行

C.两条直线被第三条直线所截,那么这两条直线平行

D.如果两条直线都和第三条直线平行,那么这两条直线也互相平行

2.如图,可以得到DE∥BC的条件是______ [ ]

(2题)(5题)(3题)(7题)(8题)

A.∠ACB=∠BAC B.∠ABC+∠BAE=180°

C.∠ACB+∠BAD=180°

D.∠ACB=∠BAD 3.如图,直线a、b被直线c所截,现给出下列四个条件:(1)∠1=∠2(2)∠3=∠6(3)∠4+∠7=180°(4)∠5+∠8=180°,其中能判定a∥b的条件是_________[ ]A.(1)(3)B.(2)(4)C.(1)(3)(4)D.(1)(2)(3)(4)4.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是________[ ]A.第一次向右拐40°,第二次向左拐40°

B.第一次向右拐50°,第二次向左拐130°

C.第一次向右拐50°,第二次向右拐130° D.第一次向左拐50°,第二次向左拐130°

5.如图,如果∠1=∠2,那么下面结论正确的是_________.[ ] A.AD∥BC B.AB∥CD C.∠3=∠4 D.∠A=∠C 6.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为()

A.互相垂直 B.互相平行 C.相交

D.无法确定

7.如图,在平行四边形ABCD中,下列各式不一定正确的是()

A.∠1+∠2=180°

B.∠2+∠3=180° C.∠3+∠4=180°

D.∠2+∠4=180°

8.如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()

A.30° B.60° C.90°

D.120°

二、填空题

9.如图,由下列条件可判定哪两条直线平行,并说明根据.

(1)∠1=∠2,.(2)∠A=∠3,.

(3)∠ABC+∠C=180°.

10.如果两条直线被第三条直线所截,一组同旁内角的度数之比为3∶2,差为36°,那么这两条直线的位置关系是________.

11.同垂直于一条直线的两条直线_______.同一平面内,不重合的两直线的位置关系是。

12.如图,直线EF分别交AB、CD于G、H.∠1=60°,∠2=120°,那么直线AB与CD的关系是________,理由是:____________________________________________.

13.如图,AB∥EF,BC∥DE,则∠E+∠B的________.

三、解答题

14.已知:如图,∠1=∠2,且BD平分∠ABC.求证:AB∥CD.15.(1)如图,若AB∥DE,∠B=135°,∠D=145°,你能求出∠C的度数吗?

(2)在AB∥DE的条件下,你能得出∠B、∠C、∠D之间的数量关系吗?并说明理由.

16.已知:如图,∠1=∠2,∠3=100°,∠B=80°.求证:EF∥CD.

17.已知AB∥CD,∠B=100°EF平分∠BEC, EG⊥EF ,求 ∠DEG的度数。

18.如图,∠1与∠D互余,CF⊥DF,试探究AB与CD的位置关系,并说明理由。篇三:七年级平行线的判定与性质练习题带答案

平行线的判定与性质练习2013.3

一、选择题

1.下列命题中,不正确的是____ [ ] A.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行

B.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行

C.两条直线被第三条直线所截,那么这两条直线平行

D.如果两条直线都和第三条直线平行,那么这两条直线也互相平行

2.如图,可以得到DE∥BC的条件是 ______ [ ](2题)(3题)(5题)

A.∠ACB=∠BAC B.∠ABC+∠BAE=180°

C.∠ACB+∠BAD=180°

D.∠ACB=∠BAD 3.如图,直线a、b被直线c所截,现给出下列四个条件:(1)∠1=∠2,(2)∠3=∠6,(3)∠4+∠7=180°,(4)∠5+∠8=180°,其中能判定a∥b的条件是_________[ ] A.(1)(3)B.(2)(4)C.(1)(3)(4)D.(1)(2)(3)(4)4.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是________[ ] A.第一次向右拐40°,第二次向左拐40°

B.第一次向右拐50°,第二次向左拐130°

C.第一次向右拐50°,第二次向右拐130° D.第一次向左拐50°,第二次向左拐130°

5.如图,如果∠1=∠2,那么下面结论正确的是_________.[ ] A.AD∥BC B.AB∥CD C.∠3=∠4 D.∠A=∠C 6.如图,a∥b,a、b被c所截,得到∠1=∠2的依据是()

A.两直线平行,同位角相等 B.两直线平行,内错角相等

C.同位角相等,两直线平行 D.内错角相等,两直线平行

(6题)(8题)(9题)7.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为()

A.互相垂直 B.互相平行 C.相交

D.无法确定

8.如图,AB∥CD,那么()

A.∠1=∠4 B.∠1=∠3 C.∠2=∠3 D.∠1=∠5 9.如图,在平行四边形ABCD中,下列各式不一定正确的是()

A.∠1+∠2=180°

B.∠2+∠3=180°

C.∠3+∠4=180°

D.∠2+∠4=180°

10.如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()

A.30° B.60° C.90°

D.120°(10题)(11题)

二、填空题

11.如图,由下列条件可判定哪两条直线平行,并说明根据.

(1)∠1=∠2,________________________.(2)∠A=∠3,________________________.(3)∠ABC+∠C=180°,________________________.

12.如果两条直线被第三条直线所截,一组同旁内角的度数之比为3∶2,差为36°,那么这两条直线的位置关系是________.

13.同垂直于一条直线的两条直线________.

14.如图,直线EF分别交AB、CD于G、H.∠1=60°,∠2=120°,那么直线AB与CD的关系是________,理由是:____________________________________________.(14题)(15题)

15.如图,AB∥EF,BC∥DE,则∠E+∠B的度数为________.

三、解答题

16.已知:如图,∠1=∠2,且BD平分∠ABC.求证:AB∥CD.17.已知:如图,AD是一条直线,∠1=65°,∠2=115°.求证:BE∥CF.

18.已知:如图,∠1=∠2,∠3=100°,∠B=80°.求证:EF∥CD.

19.已知:如图,FA⊥AC,EB⊥AC,垂足分别为A、B,且∠BED+∠D=180°.

求证:AF∥CD.

20.如图,已知∠AMB=∠EBF,∠BCN=∠BDE,求证:∠CAF=∠AFD.

21.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角A是120°,第二次拐的角B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,问∠C是多少度?说明你的理由.

23.(1)如图,若AB∥DE,∠B=135°,∠D=145°,你能求出∠C的度数吗?

(2)在AB∥DE的条件下,你能得出∠B、∠C、∠D之间的数量关系吗?并说明理由.

24.如图,在折线ABCDEFG中,已知∠1=∠2=∠3=∠4=?∠5,?延长AB、GF交于点M.试探索∠AMG与∠3的关系,并说明理由.

25.(开放题)已知如图,四边形ABCD中,AB∥CD,BC∥AD,那么∠A与∠C,∠B与∠D的大小关系如何?请说明你的理由.

答案:CBDAB ABDDB 7.(1)AD∥BC内错角相等,两直线平行

(2)AD∥BC同位角相等,两直线平行

(3)AB∥DC同旁内角互补,两直线平行

8.平行

9.平行

10.平行∵∠EHD=180°-∠2=180°-120°=60°,∠1=60°,∴∠1=∠EHD,∴AB∥CD(同位角相等,两直线平行).8.证明:∵∠AMB=∠DMN,又∠ENF=∠AMB,∴∠DMN=∠ENF,∴BD∥CE.∴∠BDE+∠DEC=180°.

又∠BDE=∠BCN,∴∠BCN+∠CED=180°,∴BC∥DE,∴∠CAF=∠AFD.

点拨:本题重点是考查两直线平行的判定与性质.21.解:∠C=150°.

理由:如答图,过点B作BE∥AD,则∠ABE=∠A=120°(两直线平行,内错角相等).

∴∠CBE=∠ABC-∠ABE=150°-120°=30°.

∵BE∥AD,CF∥AD,∴BE∥CF(平行于同一条直线的两直线平行).

∴∠C+∠CBE=180°(两直线平行,同旁内角互补).

5.2.2平行线的判定练习题 第5篇

(检测时间50分钟满分100分)

班级_________________姓名____________得分________

一、选择题:(每小题3分,共15分)

1.如图1所示,下列条件中,能判断AB∥CD的是()

A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD

A

D

ADA

E

EC

(1)(2)(3)2.如图2所示,如果∠D=∠EFC,那么()

A.AD∥BCB.EF∥BCC.AB∥DCD.AD∥EF3.如图3所示,能判断AB∥CE的条件是()

A.∠A=∠ACEB.∠A=∠ECDC.∠B=∠BCAD.∠B=∠ACE4.下列说法错误的是()

A.同位角不一定相等B.内错角都相等

C.同旁内角可能相等D.同旁内角互补,两直线平行

5.不相邻的两个直角,如果它们有一边在同一直线上,那么另一边相互()A.平行B.垂直C.平行或垂直D.平行或垂直或相交

二、填空题:(每小题3分,共9分)

1.在同一平面内,直线a,b相交于P,若a∥c,则b与c的位置关系是______.2.在同一平面内,若直线a,b,c满足a⊥b,a⊥c,则b与c的位置关系是______.3.如图所示,BE是AB的延长线,量得∠CBE=∠A=∠C.DC

(1)由∠CBE=∠A可以判断______∥______,根据是_________.(2)由∠CBE=∠C可以判断______∥______,根据是_________.三、训练平台:(每小题15分,共30分)

1.如图所示,已知∠1=∠2,AB平分∠DAB,试说明DC∥AB.A

2.如图所示,已知直线EF和AB,CD分别相交于K,H,且EG⊥AB,∠CHF=600,∠E=•30°,试说明AB∥

CD.E

AK

BCH

D

四、提高训练:(共20分)

如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?•为什么?

de

a

bc

五、探索发现:(共22分)

如图所示,请写出能够得到直线AB∥CD的所有直接条件.A24B

C

5D

六、中考题与竞赛题:(共4分)

(2000.江苏)如图所示,直线a,b被直线c所截,现给出下c

列四个条件:•①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.说明a∥b的条件序号为()

1其中能

a

A.①②B.①③C.①④D.③④

平行线的性质和判定证明练习题 第6篇

2.已知如图,AC⊥BC,CD⊥AB,FG⊥AB, ∠1=∠2,求证:

3.已知如图,∠1=∠2,∠C=∠F,求证∠A=∠D

DE⊥AC

4.已知如图, AD⊥BC, EF⊥BC,∠1=∠2,求证:DG∥BA

5.已知如图,AC∥DE,DC∥EF,CD平分∠BCA,求证:EF平分∠BED

平行线的判定经典习题 第7篇

●实验目的

本实验旨在研究运用交互式电子白板对学生能力的改变。

●实验对象

选取自长春市103中学七年级各方面情况相近的两个班级, 二班和四班共84名学生为实验对象, 选取A班为实验班, 共计42名学生;选取B班为对照班, 共计42名学生。

●实验变量

以交互式电子白板的应用为自变量, 以学生能力为因变量。

●实验假设

依据本节课的教学目标, 本节课旨在培养锻炼学生的探究、操作、推理、交流等能力, 因此, 实验者大胆假设在运用交互式电子白板环境下更有利于培养学生的观察分析、协作交流、问题解决等能力。

●实验过程

1对103中学七年级的各个班级学生做调查分析, 选取出学生能力、学生课上活跃度、师资分配等各方面条件相近的两个班级, 分别为实验班和对照班;2由东北师范大学理性信息技术研究院对实验班的师生进行交互式电子白板的应用培训;3实验者在师生培训的同时编制评价量规;4实验班应用交互式电子白板进行《平行四边形判定》这一课的教学;5依据实际教学过程中学生的分组情况, 从东北师范大学理想信息技术研究院教育技术学的13级研究生中选取7名研究生, 在实验班的教学过程中应用量规对实验班学生能力进行测量, 每位研究生负责一组共6名学生的测量;6对照班进行《平行四边形判定》这一课的教学;7由上述7名研究生应用相同量规对对照班学生进行与实验班相同的测量;8整理、分析实验数据, 对交互式电子白板的应用效果进行评价并得出结论。

●应用效果的评价

1.评价工具

本研究采用量规为评价工具, 其具有操作性好、准确性高的特点。量规制作者将从与评价目标相关的多个方面详细规定评定指标。

2.评价过程

由7位研究生每人负责一组, 每组6名学生, 应用下页表1在课上分别对实验班和对照班的学生能力进行评价;整理实验数据, 进行分析对照。

●实验数据及分析

1.实验数据

经整理得出, 实验班测量数据如下页表2所示。

经整理得出, 对照班测量数据如下页表3所示。

2.数据分析

(1) 观察分析能力

由下页图1可以看出, 实验班学生的得分集中在3分、4分, 而对照班学生的得分集中在2分、3分, 由此可分析出, 实验班和对照班的学生都具有较好的观察能力, 但是实验班学生的逻辑分析能力要远高于对照班。因此得出结论, 在应用交互式电子白板教学环境下更有助于锻炼培养学生的观察分析能力。

(2) 协作交流能力

由图2可以看出, 实验班学生的得分集中在3分、4分, 而对照班学生的得分集中在2分的居多, 由此可分析出, 学生自身具有一定的协作交流能力, 只是在传统环境下, 学生的主动性较差, 过多地依赖于教师, 动手能力不强, 容易产生思维惰性。因此得出结论, 在应用交互式电子白板教学环境下更有助于锻炼培养学生的协作交流能力。

(3) 问题解决能力

由下页图3可以看出, 实验班得分在3分和4分的学生人数明显多于对照班相同得分的人数。由此可分析出, 学生的问题解决能力总体上较弱, 目前还缺乏系统的培养锻炼, 但是我们从对比数据中可以发现实验班学生的问题解决能力的总体水平明显高于对照班。因此得出结论, 在应用交互式电子白板教学环境下更有助于锻炼培养学生的问题解决能力。

●结论

由授课教师和在场研究生反馈, 实验者总结在应用交互式电子白板的环境下, 学生学习的积极性更为强烈, 更乐于主动思考;实践操作由软件支撑使得探究更为便捷, 使学生更乐于动手操作。由实验数据分析后得出结论, 在运用交互式电子白板环境下更有利于培养学生的观察分析、协作交流、问题解决等能力。

平行线的判定经典习题 第8篇

一、填空

1、如图1,若A=3,则∥;若2=E,则∥;若+= 180°,则∥。

2、在四边形ABCD中,∠A +∠B = 180°,则∥()。

3、如图2,若∠1 +∠2 = 180°,则∥。

4、如图3,推理填空:

(1)∵∠A =∠(已知),∴AC∥ED();(2)∵∠2 =∠(已知),∴AC∥ED();(3)∵∠A +∠= 180°(已知),∴AB∥FD();(4)∵∠2 +∠= 180°(已知),∴AC∥ED();

二、解答下列各题

5、如图4,∠D =∠A,∠B =∠FCB,求证:ED∥CF。

6、如图5,∠1∶∠2∶∠3 = 2∶3∶4,∠AFE =60°,∠BDE =120°,写出图中平行的直线,并说明理由。

7、如图6,直线AB、CD被EF所截,∠1 =∠2,∠CNF =∠BME。求证:⑴、AB∥CD。⑵、MP∥NQ。

(第1页,共4页)

A

B 图1

C

2d 2

a b

B D

3C

4B

D F

D 图

53C

B

E

F

图6 Q

B P D

平行线的性质

一、填空

1、如图1,已知∠1 = 100°,AB∥CD,则∠2 =,∠3 =,∠4 =。

2、如图2,直线AB、CD被EF所截,若∠1 =∠2,则∠AEF +∠CFE =。

FB B E3 DD F B C A B D图1 图2 图4 图

33、如图3所示:

⑴、若EF∥AC,则∠A +∠= 180°,∠F + ∠= 180°()。⑵、若∠2 =∠,则AE∥BF。

⑶、若∠A +∠= 180°,则AE∥BF。

4、如图4,AB∥CD,∠2 = 2∠1,则∠2 =。

5、如图5,AB∥CD,EG⊥AB于G,∠1 = 50°,则∠E =。

EC l 1 A F 2 B FGl2 DF D C C A G图5 图7 图8 图66、如图6,AB∥CD,AC⊥BC,图中与∠CAB互余的角有。

7、如图7,直线l1∥l2,AB⊥l1于O,BC与l2交于E,∠1 = 43°,则∠2 =。

8、如图8,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(不包括∠1)共有个。

二、解答下列各题 C

9、如图9,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G。F

图9

E

10、如图10,DE∥BC,∠D∶∠DBC = 2∶1,∠1 =∠2,求∠DEB的度数。

B C

图1011、如图11,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1 +∠2 = 90°。求证:(1)AB∥CD;(2)∠2 +∠3 = 90°。

1D C F

图11

《相交线与平行线》练习题

1、设a、b、c为平面上三条不同直线,a)若a//b,b//c,则a与c的位置关系是_________;

b)若ab,bc,则a与c的位置关系是_________;

c)若a//b,bc,则a与c的位置关系是________。

2、如图,BCAC,CB8cm,AC6cm,AB10cm,那么点A到BC的距离是_____,点B到AC的距离是_______,点A、B两点的距离是_____,点C到AB的距离是________。

3、如图,已知AB、CD、EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28°,求∠COE、∠AOE、∠AOG的度数。

4、如图,AOC与BOC是邻补角,OD、OE分别是AOC与BOC的平分线,试判断OD与OE的位置关系,并说明理由。

5、如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系。

解:∠B+∠E=∠BCE

过点C作CF∥AB,则B____()

又∵AB∥DE,AB∥CF,∴____________()

∴∠E=∠____()

∴∠B+∠E=∠1+∠

2即∠B+∠E=∠BCE。

6、⑴如图,已知∠1=∠2 求证:a∥b。

⑵直线a//b,求证:12。

7、阅读理解并在括号内填注理由:

如图,已知AB∥CD,∠1=∠2,试说明EP∥FQ。

证明:∵AB∥CD,∴∠MEB=∠MFD()

又∵∠1=∠2,∴∠MEB-∠1=∠MFD-∠2,即 ∠MEP=∠______

∴EP∥_____。()

8、已知DB∥FG∥EC,A是FG上一点,∠ABD=60°,∠ACE=36°,AP平分∠BAC,求:⑴∠BAC的大小;

⑵∠PAG的大小.9、如图,已知ABC,ADBC于D,E为AB上一点,EFBC于F,DG//BA交CA于G.求证

线面平行判定习题 第9篇

注意:证明线面平行的方法可分为三类:①直接法,②找中点(或作中点),③通过连接平行四边形的对角线,找中点(平行四边形的对角线互相平分)。题型一:直接法

1、如图是正方体ABCD-A1B1C1D1,求证:BC1∥平面AB1D

1题型二:找中点(或作中点)

2、如图是四棱锥,已知BC∥AD且BC

AD,E为中点,2求证:CE∥平面PAB

题型三:通过连接平行四边形的对角线,找中点

3、如图,在底面为平行四边形的四棱锥P-ABCD中,F为PC的中点,求证:PA∥平面FBD.D

变式训练:

平行四边形判定教案与习题 第10篇

第一部分

一、课堂引入 【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?

从探究中得到:

平行四边形判定方法1

两组对边分别相等的四边形是平行四边形。平行四边形判定方法2

对角线互相平分的四边形是平行四边形。

二、例习题分析

例1(教材P87例3)已知:如图ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF. 求证:四边形BFDE是平行四边形.

分析:欲证四边形BFDE是平行四边形可以根据判定方法2来证明.(证明过程参看教材)

问;你还有其它的证明方法吗?比较一下,哪种证明方法简单.

例2(补充)已知:如图,A′B′∥BA,B′C′∥CB,C′A′∥AC. 求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点. 证明:(1)∵

A′B′∥BA,C′B′∥BC,∴

四边形ABCB′是平行四边形. ∴ ∠ABC=∠B′(平行四边形的对角相等). 同理∠CAB=∠A′,∠BCA=∠C′.

(2)由(1)证得四边形ABCB′是平行四边形.同理,四边形ABA′C是平行四边形. ∴

AB=B′C,AB=A′C(平行四边形的对边相等). ∴

B′C=A′C.

同理

B′A=C′A,A′B=C′B.

∴ △ABC的顶点A、B、C分别是△B′C′A′的边B′C′、C′A′、A′B′的中点.

例3(补充)小明用手中六个全等的正三角形做拼图游戏时,拼成一个六边形.你能在图中找出所有的平行四边形吗?并说说你的理由.

解:有6个平行四边形,分别是ABOF,ABCO,BCDO,CDEO,DEFO,EFAO.

理由是:因为正△ABO≌正△AOF,所以AB=BO,OF=FA.根据 “两组对边分别相等的四边形是平行四边形”,可知四边形ABCD是平行四边形.其它五个同理.

三、随堂练习

1.如图,在四边形ABCD中,AC、BD相交于点O,(1)若AD=8cm,AB=4cm,那么当BC=___ _cm,CD=___ _cm时,四边形ABCD为平行四边

形;

(2)若AC=10cm,BD=8cm,那么当AO=__ _cm,DO=__ _cm时,四边形ABCD为平行四边形.

2.已知:如图,ABCD中,点E、F分别在CD、AB上,DF∥BE,EF交BD于点O.求证:EO=OF.

第二部分

一、引入课堂

【探究】

取两根等长的木条AB、CD,将它们平行放置,再用两根木条BC、AD加固,得到的四边形ABCD是平行四边形吗?

结论:一组对边平行且相等的四边形是平行四边形.

二、例习题分析

例1(补充)已知:如图,ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.

分析:证明BE=DF,可以证明两个三角形全等,也可以证明 四边形BEDF是平行四边形,比较方法,可以看出第二种方法简单.

证明:∵

四边形ABCD是平行四边形,∴

AD∥CB,AD=CD.

E、F分别是AD、BC的中点,∴

DE∥BF,且DE=

DE=BF.

四边形BEDF是平行四边形(一组对边平行且相等的四边形平行四边形).

BE=DF.

此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路.

例2(补充)已知:如图,行四边形.

分析:因为BE⊥AC于E,DF⊥AC于F,所以BE∥DF.需再证明BE=DF,这需要证明△ABE与△CDF全等,由角角边即可.

证明:∵

四边形ABCD是平行四边形,∴

AB=CD,且AB∥CD.

∠BAE=∠DCF.

BE⊥AC于E,DF⊥AC于F,∴

BE∥DF,且∠BEA=∠DFC=90°.

△ABE≌△CDF(AAS).

11AD,BF=BC.

22ABCD中,E、F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF是平

BE=DF.

四边形BEDF是平行四边形(一组对边平行且相等的四边形平行四边形).

三、课堂练习

1.在下列给出的条件中,能判定四边形ABCD为平行四边形的是().(A)AB∥CD,AD=BC

(B)∠A=∠B,∠C=∠D

(C)AB=CD,AD=BC

(D)AB=AD,CB=CD 2.已知:如图,AC∥ED,点B在AC上,且AB=ED=BC,找出图中的平行四边形,并说明理由.

平行四边行判定习题

1.下列条件中能判断四边形是平行四边形的是().

(A)对角线互相垂直

(B)对角线相等

(C)对角线互相垂直且相等

(D)对角线互相平分 2.已知:如图,△ABC,BD平分∠ABC,DE∥BC,EF∥BC,求证:BE=CF

3.判断题:

(1)相邻的两个角都互补的四边形是平行四边形;

()(2)两组对角分别相等的四边形是平行四边形;

()(3)一组对边平行,另一组对边相等的四边形是平行四边形;

()(4)一组对边平行且相等的四边形是平行四边形;

()(5)对角线相等的四边形是平行四边形;

()(6)对角线互相平分的四边形是平行四边形.

()

4.延长△ABC的中线AD至E,使DE=AD.求证:四边形ABEC是平行四边形. 5.在四边形ABCD中,(1)AB∥CD;(2)AD∥BC;(3)AD=BC;(4)AO=OC;(5)DO=BO;(6)AB=CD.选择两个条件,能判定四边形ABCD是平行四边形的共有________对.(共有9对)

平行线的判定经典习题 第11篇

活动一:温故而知新 (完成时段:课前用时:5分钟) (先独立回顾, 再小组交流完成)

1. 平行四边形的定义是什么?

______________的四边形是平行四边形。

2. 平行四边形有哪些性质?

______________________________

3.你能写出上述性质的逆命题吗?

________________

活动二:平行四边形的判定探究 (完成时段:课堂用时:15分钟) (先独立思考, 再小组合作完成)

利用课前准备的一些材料, 你能动手做一个平行四边形模型吗? (用一长一短两组木条, 或长短不一的两根木条及橡皮筋想办法拼成一个平行四边形。)

实验结论:______

活动三:判定定理的证明。

已知:在四边形ABCD中, AB=CD, AD=BC。

求证:四边形ABCD是平行四边形。

已知:在四边形ABCD中, 对角线AC、BD相交于点O且AO=CO, BO=DO。

求证:四边形ABCD是平行四边形。

二、导学案各部分的设计意图说明

活动一:引发思考, 提出议题。

1.“回忆”平行四边形定义及性质。

定义:具有性质和判定的双重作用。

性质:分别从边、角、对角线三个不同角度说明。

关注学生能否有条理、有序、完整而准确地叙述这些性质, 做到不重复, 不遗漏。

温故而知新, 利用平行四边形的性质与判定之间的互逆的关系, 引出新知。

2.“猜想”由平行四边形的边、角、对角线之间的关系能否得出平行四边形的判定方法呢?在这里, 要鼓励学生大胆猜想, 假设结论。

活动二:实验论证, 得出判定。

“实验”动手操作, 感知结论。

用一长一短两组木条, 或长短不一的两根木条及橡皮筋想办法拼成一个平行四边形, 并用数学语言表达这些结论。

关注学生的操作过程, 并进行适当指导;同时关注学生语言表述是否简明、准确。学生通过自己动手、实验, 完成导学案上的内容, 看看有几种方法可以判断一个四边形是平行四边形?这一环节让学生观察、猜想, 经历了知识的发展形成的过程, 体验了“发现”知识的快乐, 变被动接受为主动探究。

【设计意图】培养学生动手能力, 让学生亲身体验知识的形成过程。

活动三:理论证明, 得出判定。

1.“证明”理论知识, 证明结论。

让学生对实验操作的结论从中选取1~2条, 结合图形, 加以证明。运用三角形全等的知识和平形四边形的定义进行证明。

证明命题是一个难点, 知识的真正获得不是靠知者的“告诉”, 而是在于学习者的亲身体验所得, 因此本课教师采用了小组合作探究解决问题。这一过程让学生主动思考、互相交流、共同探究解决问题的方法, 给学生营造了探究新知的氛围, 最后由教师引导, 由学生到前面板演、讲解你用什么方法判断一个四边形是平行四边形, 真正将课堂这一主阵地交给学生, 让学生继续动手、实验, 把证明平行四边形的问题逐步转化为证明线平行、角相等、三角形全等, 体现化归的思想。也使学生有一个不断的自我矫正的过程, 突破了难点。

【设计意图】使学生从感性认识上升到理性认识。

2.“归纳”平行四边形判定定理。

“你能画出图形, 用符号语言表述这些定理吗?”“判定定理与性质定理有何区别与联系?”“你现在学会了几种平行四边形的判定方法?”由这一连串的问题, 进一步加深学生对判定定理的理解。

【设计意图】通过文字语言、图形语言和符号这三种数学语言的表述, 很好地体现了数形结合思想, 同时培养了学生的符号感。

学生在完成以上的导学案后, 通过小组合作交流, 接下来便是他们展示的时间。把导学案分五个版块, 由五个组分别负责展示。他们画图、板演、分析、讲解、质疑、总结方法、归纳解题技巧。不仅收获着知识, 还收获着成功与快乐。老师及时进行追问, 使学生的理解更加深刻, 增强展示的效果。

三、教学设计反思

“学生是数学学习的主人, 教师是整个活动的组织者, 参与者与合作者”。因此, 在设计时, 我注意了以下几点:激发学生的兴趣;激活学生的思维;关注学生的互动;注重师生角色的转变。一方面, 教师由传统模式下的“主演”变为“导演”, 成为学生学习的伙伴, 另一方面, 学生的学习方式有了根本转变。在本节课中, 他们积极参与自学、交流、合作、展示、补充、互评等学习过程。“自主、合作、探究”的学习方式, 给人留下了深刻的印象, 学生主体地位得到了充分落实。

摘要:《平行四边形的判定》是人教版八年级下平行四边形的判定的第一课时。教师在教学设计时, 应开展有效而有趣的活动使学生有所体验, 要重视实践操作、测量, 经历观察、实验、猜想、证明等数学活动, 突出探究性, 使学生亲历“做数学”的过程。而教师只需在必要时给予一定的点拨、引导。通过钻研教材, 作者编写了一份导学案。通过它不但让学生明确了本节课的学习目标, 还起到了提纲挈领的作用。

相关文章
运动会跳绳通讯稿

运动会跳绳通讯稿

运动会跳绳通讯稿(精选6篇)运动会跳绳通讯稿 第1篇跳出健康、跳出风采胶州市第六实验小学举行跳绳比赛活动随着一生哨响,胶州市第六实验...

1
2025-09-23
艺术匠心范文

艺术匠心范文

艺术匠心范文(精选10篇)艺术匠心 第1篇一篇文学作品的优秀,源于作者深邃而独特的见识,源于作者独具匠心的表现技巧,源于作者精准而细腻的...

1
2025-09-23
英文入学申请书范文

英文入学申请书范文

英文入学申请书范文(精选9篇)英文入学申请书范文 第1篇Application Letter for AdmissionDear Sir or Madam,My name is ______...

1
2025-09-23
远程网络控制范文

远程网络控制范文

远程网络控制范文(精选11篇)远程网络控制 第1篇1 智能网络现场控制单元的基本结构远程控制依附于网络技术, 其控制模式是客户服务器模...

1
2025-09-23
银行面试题自我介绍

银行面试题自我介绍

银行面试题自我介绍(精选5篇)银行面试题自我介绍 第1篇在准备自我介绍时,我们要先明白自我介绍的目的是什么?其实,HR让你做自我介绍,...

1
2025-09-23
移动安全生产工作总结

移动安全生产工作总结

移动安全生产工作总结(精选8篇)移动安全生产工作总结 第1篇近年来,分公司始终把安全生产作为头等大事来抓,坚持“安全第一,预防为主”...

1
2025-09-23
一缕阳光的小学作文

一缕阳光的小学作文

一缕阳光的小学作文(精选6篇)一缕阳光的小学作文 第1篇当我们汲汲于富贵,戚戚于贫贱时,何不让一缕阳光走进我们的心里,晕开满心的疲惫...

1
2025-09-23
医院2016年医疗质控工作计划

医院2016年医疗质控工作计划

医院2016年医疗质控工作计划(精选12篇)医院2016年医疗质控工作计划 第1篇冕宁漫水湾友松医院2016年医疗质控工作计划2016年我院为进一步...

1
2025-09-23
付费阅读
确认删除?
回到顶部