正文内容
长方体和正方体体积(教学设计)
来源:文库
作者:开心麻花
2025-09-19
1

长方体和正方体体积(教学设计)(精选14篇)

长方体和正方体体积(教学设计) 第1篇

教学基本

内容六年制小学数学第十一册P2526。

教学目的和要求

1、使学生经历操作、观察、猜想、验证、交流和归纳等数学活动的过程,探索并掌握长方体和正方体的体积公式,能应用公式正确计算长方体和正方体的体积,并能解决相关的简单实际问题。

2、使学生在活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。

3、培养学生初步的归纳推理、抽象概括的能力。

教学重点

及难点探索并掌握长方体和正方体体积的计算方法。

长方体和正方体体积公式的推导。

教学方法

及手段本课设计了一系列的问题,让学生自主探究,从中探索并掌握长方体和正方体的体积计算公式,促进学生的思维,提高学生积累探索数学问题的经验,进一步增强学生的空间观念。

学法指导

讨论交流,并认真听讲思考。

集体备课个性化修改

预习阅读书本25、26页,并初步理解解

教学环节设计

一、以旧引新

师:上节课我们认识了长方体和正方体的特征,谁能对着模型再来介绍一下?

要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们来学习怎样计算长方体和正方体的体积.(板书课题)

二、探究新知

1、通过操作、观察、猜想来认识长方体的体积与长、宽、高的关系。

师:用1立方厘米的小正方体摆成长方体,要求四人小组内每人摆出的长方体各不相同。

师:将摆出的长方体放在桌上,并编号。

请同学们说一说这些长方体的长、宽、高各是多少,你是怎样看出来的,将这些长方体的长、宽、高依次记录在表格中。

引导学生依次去数每个长方体中包含的小长方体的个数,并记录在表格中。

问?观察表格中的这些长方体的长、宽、高以及它们的体积,再联系刚才数出它们体积的过程,你发现了什么?

师:通过刚才的操作和讨论,我们想一想,长方体的体积是不是它的长、宽、高的乘积呢?

依次出示例10中的三个长方体,问:如果用1立方厘米的小正方体摆出这三个长方体,各需要多少个小正方体?

师:摆出的每个长方体的长、宽、高分别是多少?体积是多少立方厘米?这个结果与你操作前的想法一样吗?

2、验证、交流后归纳出长方体的体积计算公式及字母公式。

通过刚才操作过程中的发现,同学们能说一说长方体的体积与它的长、宽、高有什么关系吗?怎样求长方体的体积?

通过交流得出公式:长方体的体积=长宽高。

问:如果用V表示长方体的体积用a、b、h分别表示长方体长、宽、高(出示如教材所示的长方体的直观图),你能用字母表示长方体的体积公式吗?

交流得出:V=abh.

3、根据正方体与长方体之间的联系,得出正方体的体积计算公式。

师:正方体的棱长有什么特点?你能直接写出正方体的体积公式吗?

交流得出:正方体的体积=棱长棱长棱长。

重点理解的含义,进一步明确的读法、写法。

做“试一试”。

作业做“练一练”。

做练习六第2题

课堂作业:做练习六第1、2题

板书设计

执行情况与课后小结

长方体和正方体体积(教学设计) 第2篇

(三)》教学设计

教学内容:

《义务教育教科书·数学》(青岛版)六年制五年级下册第七单元信息窗4.教学目标:

1.给合具体情境探索、掌握长方体和正方体的体积计算方法,会计算长方体和正方体的体积。

2.在观察、操作、探索的过程中,提高动手操作能力,进一步发展空间观念。3.在解决简单的实际问题中,体会数学与生活的密切联系,增强应用意识。

教学重点:长方体和正方体体积(容积)的计算。

教学难点:计算方法的探究和理解。

教具准备:课件。

学具准备:长方体实物模型(萝卜或土豆)、小正方体数个。

教学过程:

一、情境导入

课件出示教材中的情境图。

师:同学们,请看屏幕,生活中见过这样的盒子吗?仔细观察,从图中你知道了哪些数学信息?

学生回答,教师适时评价。

师:根据这些数学信息,谁能提出什么数学问题?(出示课件)学生可能提出:

(1)可乐箱的体积是多少?

(2)桃汁饮料盒的体积是多少?

(3)啤酒箱的体积是多少?

„„

【设计意图:直接出示情境图,以学生生活中常见的这些盒子直接切入主题,既适合五年级的学生,又和学生的生活紧密联系在一起,让学生体会到数学来源于生活。】

二、合作探索

1.怎样求饮料箱的体积呢?

师引导学生由问题入手,引起学生思考:要求饮料箱的体积,我们就要知道体积的 1

计算方法。那怎样计算体积呢?这些物体的形状是长方体和正方体,那我们就可以借助长方体或正方体学具来研究怎样求长方体和正方体的体积。

(1)切割学具,自主探究。

师:那长方体的体积怎样求呢?

让学生将课前准备的萝卜或土豆切成一个长6厘米、宽2厘米、高3厘米的长方体模型。引导学生先动手切一切,把长方体切成棱长是1厘米的小正方体,也就是1立方厘米的小正方体,切完后再数一数共包含多少个小正方体。

学生动手操作,最后交流小正方体的个数是36个。

师:那刚才这个长6厘米、宽2厘米、高3厘米的长方体的体积是多少呢? 引导学生明晰:长方体中含有多少个1立方厘米,体积就是多少立方厘米。这个长方体一共含有36个小正方体,它的体积就是36立方厘米。(出示课件展示切割过程)

(2)拼摆学具,感悟算理。

师:除了切割,我们也可以用学具来摆一摆。请同学们拿出准备好的小正方体,摆出长是6厘米、宽是2厘米、高是3厘米的长方体。同桌交流你是怎样拼摆出来的?体积又是多少?

引导学生交流出:长摆了6个小正方体,摆了这样的2排,摆了这样的3层。体积是36立方厘米。

师:为什么长摆了6个小正方体?为什么摆这样的2排?又为什么摆这样的3层呢?体积为什么是36立方厘米?

引导学生交流出:因为长是6厘米,所以一排可以摆6个。宽2厘米,一层可以摆2排,高3厘米,就可以摆这样的3层。摆完后发现一共用了36个小正方体,所以体积就是36立方厘米。(出示课件:摆的过程)

师:你能列式求出小正方体的个数吗?体积呢?

生:个数:6×2×3=36(个)所以长方体的体积就是36(立方厘米)(出示课件)师:再用小正方体拼摆长5厘米、宽4厘米、高2厘米的长方体和棱长是3厘米的正方体。并且同位互相交流是怎样摆的,体积是多少,并用算式表示求小正方体的个数。

汇报交流,并且课件出示过程。

(3)组间交流,理解算理。

师:(课件呈现三个拼摆的形体及算式)同学们仔细观察这三个算式,你有什么发现?小组交流。

引导学生交流:

长方体所含“体积单位”的数量,就是长方体的体积。

长方体所含“体积单位”的数量,等于长、宽、高的乘积。

(4)提升方法,沟通联系。

师:根据我们刚才的研究,我们得出长方体和正方体的体积怎样进行计算? 学生回答,课件呈现体积计算公式和字母表示式。

师:同学们仔细观察,你们知道什么叫底面积吗?如果知道了长方体或正方体的底面积,又怎样求长方体或正方体的体积呢?为什么呢?(课件闪烁底面)

学生回答,课件呈现底面积乘高及字母表示式。

(5)解决情境图中的问题:(课件呈现情境图)

①长方体可乐箱的体积是多少? 7×3×2=42(dm3)

②正方体啤酒箱的体积是多少?

3×3×3=27(dm3)

2.教学容积的计算方法。

师:(课件呈现桃汁饮料盒及问题)同学们,还记得我们上节课学的容积吗?如果要求桃汁饮料盒可盛饮料多少升,应该知道什么条件?如果盒壁厚度不计的话,你又有什么发现?容积应该怎样求呢?同位讨论。

引导学生交流得出:(课件呈现)长方体或正方体容器容积的计算方法与体积的计算方法相同,但要从容器里面量长、宽、高,这样才能更准确地算出容器的容积。10720=1400(立方厘米)1400立方厘米=1.4升

答:桃汁饮料盒可盛饮料1.4升。

【设计意图:在问题的引领下,让学生切割学具、拼摆学具,在这种动手操作的过程中,感悟算理,在互相讨论中理解算理。在这种互动中,培养了学生合作交流和探索的能力。由学具操作提升算法并进行沟通,突出算理的教学,渗透数形结合和转化的思想。】

三、自主练习

1.基本练习:第1题和第2题(课件呈现)

2.扩展练习: 10题(课件呈现)

【设计意图:练习设计的层次性,不仅让学生重温和巩固了长方体和正方体体积计算

方法的探索过程,还让学生用所学到的知识解决生活中的实际问题,让学生更加深切的体会到数学源于生活,用于生活,提高了学生解决实际问题的能力。】

四、回顾反思

师:同学们,这节课马上就要结束了,回想一下,你有什么收获?(课件出示教材丰收园图)

学生可能回答:我会积极学习了。教师适时追问:你哪个环节最积极?(课件“积极”绿苹果图片飞出果篮,同时出示问题:你哪个环节最积极?)

学生回答。(课件将绿苹果变成红苹果)

学生也可能回答:我学会提问了。教师适时追问:你都问什么问题了?(课件“会问”绿苹果图片飞出果篮,同时出示问题:你都问什么问题了?)

学生回答。(课件将“会问”绿苹果变成红苹果)„„

师:让我们满载着收获,下课休息一下吧。(课件将红苹果装入果篮)

长方体和正方体体积(教学设计) 第3篇

师: (呈现体积分别为1立方厘米和1立方分米的小方块。) 这是棱长为1厘米的小方块, 它的体积是多少?

生:1立方厘米。

师:那么棱长为1分米的小方块, 它的体积是多少呢?

生:1立方分米。

师:对照1立方厘米, 你能说说老师手中这个长方体的体积大概是多少吗?

(呈现长6厘米、宽3厘米、高2厘米的长方体)

生:10立方厘米。

师:能说说你是怎么想的吗?

生:我是猜的。

师:还有其他的想法吗?

生:可以把这个长方体切割成1立方厘米的小方块, 再数出小方块的数量。我看大概有18立方厘米。

生:只要用尺子量出长方体的长、宽、高各是多少厘米, 然后把三个数相乘, 结果就是这个长方体的体积。

师:这种方法有哪些同学知道?

(有10多位同学举手)

……

新课程实施以来, 诸如以上这种“未学先知”的现象比比皆是, 学生事实的认知起点明显高于逻辑的认识起点。而学生的这种反应往往与教师的预设是相违背的。对于教学过程中如此的生成, 教师该如何应对呢?

据笔者所知, 教师们一般有如下几种应对措施:

其一, 教师不关注学生的学习起点, 硬把他们拉回来, 学生就只能“明知故问”了。这样, 学生显然没有学习的兴趣, 也没有自主探究的空间, 教学就成了无效或低效教学。正因如此, 教师就怕学生有“先知”, 怕学生对数学知识失去新鲜感, 怕学生课前进行了预习, 到课堂上就不认真听讲, 怕一些错误的理论先入为主影响学生。但我们不能因为“怕噎着就不吃饭“吧, 况且“先知”并不意味着“先觉”。

其二, 教师认为“学生知道了, 就不用教了”。既然学生已经知道了结果, 又何必苦苦地上下求索, 没必要再刨根问底。正因为有此思想主导, 这类教师就采取顺水推舟, 针对结论开展练习的策略。可是, 仔细思量, 这与教师直接告诉学生结论有何本质区别呢?学生的练习量是获得了显著增加, 可学生对于知识的来龙去脉却一无所知。这对于学生知识结构的形成和系统的构建都是非常不利的。

其三, 引导学生刨根问底、自主探究, 实现知其然更知其所以然。把学习活动的起点建立在学生的知识经验基础上, 让学生大胆地说, 而教师把教学的重点转移到验证、帮助理解计算公式、探究为何这样计算的原因上来, 这样学生就会感到有话可说, 就能够积极地投入到学习中去, 主动地建构知识, 这样的课, 依然是有效而富有意义的。

综观这三种应对措施, 笔者选择了第三种, 让学生由已知进行回溯, 经历一个丰满的课堂教学过程, 而非简单的“公式呈现—尝试运用—练习巩固”。这样做主要基于如下认识:

首先, 需要正确认识学生“未学先知”

1.“未学先知”是教学的精彩生成

数学教学是数学活动的教学, 是师生之间交往互动与共同发展的过程, 课堂因生成而精彩。如果没有课堂生成, 学生的主体性将无法体现, 学生的数学探究活动就不真实, 从而无法让课堂焕发出生命的活力。但生成并非都是事先可预设的, 非预设性生成信息也是一种资源, 它和各种预设性的生成资源共同构成精彩的课堂。因此, 在教学中面对各种非预设性生成信息时, 要以积极的态度与科学的策略真诚应对。

教学实践中发现, “未学先知”并不是在任何课堂中都会出现, 但不管何时发生, 不管教师是否已有预设, 都是学生主体的客观表现, 是课堂教学中的精彩生成。我们不应该对学生的“未学先知”产生害怕或逃避情绪, 而应该积极应对。

2.“未学先知”是教学的真实起点

奥苏伯尔说过:“影响学习最重要的因素是学生已经知道了什么, 教师应根据学生的原有知识进行教学。”建构主义理论也明确指出, 学生的数学学习不是知识的简单接受过程, 而是学习主体基于自身原有生活经验与知识基础的主动建构过程。因此, 只有尽可能多地了解学生, 分析学生, 掌握学生原有的生活经验和知识背景, 把握学生的学习心理和学习品质, 才能做到抓准教学的真实起点。教师可以通过课前谈话, 课始、课中提问, 如“关于这些内容, 你们已经知道了什么”, 或者教师提供解决实际问题的情境, 通过分析学生在解决问题过程中的表现来了解学生的学习起点。对于学生在课堂中表现出的“未学先知”, 教师是不应该刻意回避的。

3.明了学生“未学先知什么”

笔者在上这节研究课之前, 曾对学生进行过课前测试, “知道长方体体积计算公式吗?”全班45位同学中仅有2人认为自己知道并写出正确的公式。“你知道长方体体积计算公式的由来吗?”全班没有一位同学知道。从中我们可以发现, 只有两位同学知道长方体的体积计算公式, 而且仅仅停留在了解结果阶段, 对于结果的形成过程一无所知。可是, 在上课过程中却有10多人已经知道长方体的体积计算方法, 与课前的2人差距悬殊。难道是学生在作假吗?显然不是, 因为课前的问题和课间不同, 造成学生的回答也就不一致。其实, 课间认为已经知道公式的学生处于对知识的再认水平, 与课前的2人是有本质区别的。由此可见, 即使“未学先知”也还是有所不同的。教师只有明了学生“未学先知什么”, 才能真正实现对学生学习起点的了解, 组织教学才能有的放矢。

其次, 需要准确应对“未学先知”

“数学教育的目标不仅仅是掌握必要的数学基础知识和基本技能, 另一个核心目标是让学生深刻理解并掌握数学思想和方法。”这就是说, 数学教学不能停留在片段性的零碎知识层面, 也不能仅满足于教给程序和方法, 而是要把教学内容放在数学思想的脉络中, 还原到它的意义情境中, 让学生在这个背景下学习“知识”。这能帮助学生有效地构建各自系统的认识结构并随时通畅地提取信息, 促使各类数学知识的融会贯通。

长方体和正方体体积(教学设计) 第4篇

教学目标:

1、知识与技能目标:使学生掌握长方体和正方体体积公式的推导过程,理解长方体和正方体的计算公式;初步学会计算长方体和正方体的体积。

2、方法目标:培养学生实际操作能力同时发展他们的空间观念。

3、情感目标:在活动中使学生感受数学与实际生活的密切关系,体验学数学、用数学的乐趣,从而激发学生的学习兴趣。

教学重点:

理解长方体和正方体的体积公式的的推导过程,掌握长方体和正方体的体积的计算方法。

教学难点:

掌握长方体和正方体体积公式的推导过程,理解长方体和正方体体积的计算公式

教具准备:1立方厘米的立方体12块,多媒体课件。

学具准备:1立方厘米的立方体12块。

教学过程:

一、复习导入

1、师:在前面的学习中,我们已经掌握了一种计算体积的方法,是什么方法?

生:数体积单位。

师:我们再一起来复习一下这种方法。(课件演示)这是一个体积为1 cm3 的正方体,如果用4个这样的正方体拼成一个长方体,它的体积是多少?是的,通过前面的学习,我们知道一个物体含有几个体积单位,那么它的体积就是多少。

下面这些的长方体的体积是多少呢?请你数一数,填一填。全班交流。说说你是怎么数的?随学生回答板书。

小结:一个物体里含有多少个体积单位,它的体积就是多少。

2、(1)出示长方体和正方体模型 问:这两个长方体和正方体,你还能像刚才那样直接看出它们的体积吗?能比较它们的体积大小吗?

(2)说得真好,但是在现实生活中,用切割的这种方法有很大的局限性,比如要计算电冰箱、电脑主机等比较大的物体时,这种方法显然就行不通了,那有没有什么更好的办法,今天这节课我们就一起来探索长方体和正方体体积的计算方法。(板书课题:长方体和正方体的体积)。

二、探究新知

1、首先请同学们猜一猜长方体的体积与什么有关?

2、请同桌两人合作,用12个1立方厘米的小正方体来拼摆不同的长方体,并分别记下摆出的长方体的长、宽、高各是多少,体积单位数量及体积,再填入表中。

师:哪位同学愿意先汇报一下你们组摆的情况

这些长方体有什么共同点?不同点?为什么形状不同而体积相等呢?

请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?

摆成长方体每排用的小正方体的个数相当于长方体的长,排数相当于宽,层数相当于高。

师:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长方体的体积有没有关系?是什么关系?

长方体的体积就是它的长、宽、高的乘积。

长方体的体积=长×宽×高

如果用v表示长方体的体积,用a、b、h分别表示长、宽、高,那么长方体的体积计算公式可以表示为:学生答:

师板书:v=a×b×h 或v=abh

3、师:同学们,同学们真了不起,通过猜想、实验、验证总结出了长方体的体积计算公式,这是一个了不起的好方法,在今后我们同样可以采用这种方法来学习。现在我们就应用这个公式来解决一些实际问题。 出示课件。

学生解题后交流。

4、探索正方体的体积

师:同学们,你们能根据正方体和长方体的关系再推导出正方体体积的计算公式吗?生:能。

师:谁能说说自己的推导方法?

教师根据学生汇报,归纳板书为:

正方体的体积=棱长×棱长×棱长

V=a×a×a =a3

师讲解:a3读作的a立方,表示3个a相乘。

请你运用正方体的体积的计算公式来解决下面这个问题。课件出示。学生解题后交流。

三、巩固练习

1、体积计算。

2、雄伟的人民英雄纪念碑矗立在天安门广场上,石碑的高是14.7米,宽2.9米,厚1米。这块巨大的花岗岩石碑的体积是多少立方米?

V=abh =2.9×1×14.7=42.63(m3)

答:这块巨大的花岗岩石碑的体积是42.63立方米。

3、学校要在操场修建一个长方体的沙坑,如果长6米,宽4米,里面要铺垫0.9米厚的沙子,需要多少立方米沙子?按每立方米沙子重1.7吨计算,这些沙子重多少吨?

V=abh =6×4×0.9=21.6(m3)

0.9×21.6=19.44(吨)

答:需要21.6立方米的沙子,这些沙子重19.44吨。

四、小结

谈谈这节课的收获。

板书设计:

长方体和正方体的體积

长方体的体积=每排数×排数×层数

长方体的体积= 长× 宽× 高

V=a×b×h = abh

正方体的体积=棱长×棱长×棱长

长方体和正方体体积(教学设计) 第5篇

一、教学内容:人教版小学数学五年级下册第三单元第29页30页。

二、教材分析

:本节课是在学习长方体、正方体的特征,掌握了体积的概念和常用的体积单位的基础上教学的,是学生第一次学习立体图形的体积计算。学会长方体和正方体的计算,是学习体积单位进率的基础,更是学习容积的基础。同时使学生进一步体会到知识来源于实践,用于实践的道理,学习一些研究问题的方法。从研究平面图形到研究立体图形,是学生空间观念发展的一次飞跃。对常见平面图形特征及其周长、面积计算方法的探索,既为进一步探索长方体、正方体这样的立体图形的特征以及表面积、体积的计算方法奠定了知识基础,同时也积累了探索的经验,准备了研究的方法。通过学习长方体和正方体,可以使学生更好地以数学的眼光观察、了解周围的世界,形成初步的空间观念;同时也能为进一步学习其它立体图形打好基础。

三、学生分析:

五年级的学生已经掌握了一些数学基础知识和学习数学的基本方法,具备了一些基本的解决数学问题的能力和技巧。我所担任的班级全是哈萨克学生,他们不具有较强的自我发展的意识,对有挑战性的任务不是很感兴趣。这使得我们在教学上很吃力,所以设法给学生经历做数学的机会,使他们能够在这些活动中表现自我、发展自我,从而感受到数学学习是很重要的活动,初步形成并学会数学地思考。此外,学生已经学过长方形等基本图形,对长方体、正方体有了认识与了解,因此对本节课的内容理解起来并不是难事,关键是如何激发他们对实践及探究活动的热情,同时让他们在活动中建立数学模型的数学思维。

四、教学手段:在这节课中,主要培养学生的知识与技能,使学生在学具操作的基础上探究发现长方体和正方体的体积计算公式,并能应用体积计算公式解决实际生活中有关长方体和正方体体积的计算问题。

在经历长方体和正方体体积计算公式的探究过程中,通过实验操作、讨论归纳等活动发展学生的空间观念。在探究过程中培养学生的创新意识和实践能力。让学生亲身经历探索知识的过程,激发他们乐于探索的热情,培养学生的探索性和挑战性。同时渗透理论来源于实践的思想。

五、学习目标:

知识与技能:

使学生在学具操作的基础上探究发现长方体和正方体的体积计算公式,并能应用体积计算公式解决实际生活中有关长方体和正方体体积的计算问题。

过程与方法:

经历长方体和正方体体积计算公式的探究过程。通过实验操作、讨论归纳等活动发展学生的空间观念。

情感态度与价值观:

在探究过程中培养学生的创新意识和实践能力。让学生亲身经历探索知识的过程,激发他们乐于探索的热情,培养学生的探索性和挑战性。同时渗透理论来源于实践的思想。

六、学习重难点:

重点:

1、理解长方体和正方体体积的计算公式的推导过程。

2、能正确计算长方体和正方体的体积。

难点:

理解长方体和正方体的体积计算公式的推导过程。

七、教学准备:

教具准备:课件,若干个1立方厘米小正方块

学具准备:1立方厘米的正方体12块

八、教学方法:教法引导启发

学法:合作探究

九、学习过程:

1、新课导入

观察发现

(一)回顾旧知

(1).谁能说一下体积指的是什么?

(2).常用的体积单位有那些?

(二)导课:

(1).看来同学们对前几课的知识掌握的很好,相信大家这节课能有更好的表现。

(2.)在这里,有一种小正方体,它的体积是1立方厘米,现在把两个这样的正方体排在一起,组成的物体是什么形状?它的体积是多少?把4个排在一起呢?你们是怎么知道的?

(3).同学们说的很好,刚才我们是通过数小正方体的个数,来判断它们体积的,真聪明。

(三)揭示课题:

(1).出示长方体和正方体

你们来看这个长方体和正方体,它们的体积能直接判断出来吗?

(2).其实在现实生活中,很多长方体和正方体的体积都不能直接看出来,怎样来计算它们的体积呢?这节课我们就一起来学习《长方体的体积》。(板书课题)

2、观察思考

提出猜想

(1).利用课件,指出长方体的长、宽、高,你有什么发现?

(2).猜想

师:通过刚才的观察,你认为长方体的体积大小和什么有关?

(3)、实践操作,验证猜想

1.生动手操作:下面以小组为单位,用一些棱长是1厘米的小正方体摆出4个不同形状的长方体,记录它们的长、宽、高,完成下表。

长方体

长/cm

宽/cm

高/cm

小正方体的数量

体积/cm3

第一个长方体

第二个长方体

第三个长方体

第四个长方体

观察长方体的体积与它的长、宽、高有什么关系,在小组内交流一下你的发现。

汇报自己的发现:(小组分别汇报)

2.归纳总结:长方体的体积=长×宽×高

如果用V表示长方体的体积,用a表示长方体的长,用b表示长方体的宽,用h表示长方体的高,就可以得出V=abh4、探求新知

及时巩固

(1).求各长方体的体积。(课件呈现)

(2).一个长方体长6分米、宽3分米、高3分米,它的体积是多少?(口答)

如果把它的长截去3分米,此时的长、宽、高各是多少?变成了什么图形?

如何求如图所示的立体图形的体积?

(3).师:通过这道题目的练习你又能明白什么新知识?

引导学生明确:

这个长方体长、宽、高都相等,实际上它是一个正方体。

正方体体积=棱长×棱长×棱长(板书),师:如果正方体的棱长用字母a表示,你能用字母公式表示正方体的体积吗?

(出示标有字母的正方体)字母公式为:V=a•a•a

教师提示:a•a•a也可以写作“a3”读作“a的立方”表示三个a相乘。所以正方体的体积公式一般写成:V=a3(板书)

5、变式练习,巩固提高

(课件呈现)

解决实际问题

(1)一块砖的长是12厘米,宽是长的一半,厚是3厘米,它的体积是多少立方厘米?

(2)一个正方体的棱长总和是36厘米,它的体积是多少?

6、全课总结:这节课你有什么收货?

7、课后作业;

教材第33页8、9、10题。

七【板书设计】:

长方体的体积

长方体的体积=长×宽×高

V=

a×b×h

=abh

正方体的体积=棱长×棱长×棱长

V=a×a×a

长方体和正方体体积(教学设计) 第6篇

肇庆市怀集县洽水镇中心小学 陆文风

教材分析:

人教版义务教育教科书五年级数学下册长方体和正方体胡体积,教材第29-31页例1。本课的知识是在学生认识了长方体和正方体的基础知识,以及认识了体积的概念后的课程,本节课的内容是引导学生去寻找肯发现长方体和正方体的计算公式,以及如何运用这些知识解决有关问题。

为了使学生能更好胡学习和掌握这一课程的知识,教学时,庶充分的发挥本校的资源,如电教媒体,通过教师PPT的演示和学生的操作等,让学生亲身经历,已达到加深学生的知识记忆,理解并掌握长方体和正方体的计算公式。并通过联系生活的练习题来发展学生胡生活意识,数学与生活紧密联系的意识。

学情分析:

五(1)班共有学生47人,其中男生30人,女生27人。班级中大部分的学生都是活泼开朗和喜欢数学的,其中男生的思维转胡比较快,大部分女生偏于缓慢思考型。正因为学生的活泼,班的纪律比较差和吵闹,因此要时不时提醒学生安静,要尊重老师。同时还要利用好成绩好的学生来带动成绩差的学生胡学习兴趣肯积极性。给足够的时间让学生思考,让他们理清思路,形成自己的对知识的认识形式。

在学习长方体和正方体的体积的公式之前,学生对长方体和正方体的基础知识已经掌握的很好的了,因此这节课的公式的学习对学生来说椒相当简单的,难点在于如何引导学生应用知识去解决生活中胡问题。以现在学生的年龄和知识,适当地引导,不会很难的。教学目标:

1、知识与技能:

(1)通过学生观看小正方体拼凑成长方体来计算体积,并让学生发现体积与长宽高的关系。

(2)通过PPT演示,让学生把知识形象化。

2、过程与方法:

让学生通过自主学习、小组合作,增强学生动手操作的能力,合作交流的意识。从而建立空间观念锻炼学生的逻辑推理能力。

3、情感态度价值观:

让学生知道数学与生活的联系,懂得探索数学奥秘的乐趣,让学生有学习数学的积极情感。

教学重点:知道和运用长方体和正方体的计算公式。教学难点:推导长方体和正方体的计算公式的过程。教具、学具准备: 采用的教具为课件。教学过程

一、设疑导入

1、复习:出示长方体、正方体基础知识和生活中事物的体积大概大小。那么如何精确计算物体的大小呢?

2、揭示课题:长方体和正方体的体积公式(板书)。

(设计意图:通过创设问题情景,设疑复习,可以引导学生运用已有的知识,积极思考,引起学生的探索欲望和解决实际问题,并能制造认知冲突,形成任务驱动的探究氛围。)

二、探索新知

(一)自主探索

1、通过PPT逐个显示由小正方体拼凑成的立体图形,举手提问学生立体图形的体积是多少。

2、显示两个长方体和一个正方体,问:是什么图形? 提问:这些图形的体积是多少?

引导:前面我们计算体积是数小正方体的个数来确定体积的,那么如果把这些图形切成一个个的棱长为1厘米的小正方体,是不是就可以计算出体积了呢?

PPT显示这些图形的由小正方体拼成的形式。举手提问:图形由多少个正方体拼成,体积是多少? 让学生记录下图形的长宽高和体积。PPT显示信息的表格。

教师引导:大家把成宽高相乘,看看体积和它有什么关系。提问:你们发现了什么规律? PPT显示长方体和正方体的体积。

3、长方体和正方体体积公式(板书)。长方体的体积=长×宽×高,正方体的体积=棱长×棱长×棱长。

4、如果用V表示体积,abh分别表示长方体的长宽高,a表示正方体的棱长,V=abh,V=a.a.a=a3(a的立方)

5.让学生朗诵公式。

(二)学以致用

1.PPT显示三道应用题,学生练习本里作答,并举手回答问题。2.教师做习题评讲。

(设计意图:及时巩固知识,加深记忆,联系实际生活。)

(三)长方体和正方体的共同体积公式。1.PPT显示一个标出了底面的长方体 2.举手提问:底面积的怎么算。

学生回答,教师在PPT上显示公式。3.接下来PPT显示长方体的公式,学生观察。4.提问:可否换一种方式来计算长方体的体积呢? 5.PPT显示出公式:长方体体积=底面积×高(板书)6.提问:面积用什么字母表示?

那么这条公式用字母又怎么表示呢? 7.举手提问字母表达的公式。教师PPT显示字母公式:V=Sh.8.PPT显示一道相关练习题。

(设计意图:及时巩固刚学的知识)

四、课堂总结

以提问的方式让学生回顾知识。1.长方体体积公式是?用字母如何表示? 2.正方体体积公式是?用字母如何表示?

3.长方体和正方体共同体积公式是?用字母如何表示?(教师一边提问一边在PPT中显示除公式)4.让学生大声朗诵公式。

(设计意图:师生共同小结,加深记忆,达到画龙点睛的作用。)

五、布置作业

完成练习册21~23页的练习。

六、板书设计

长方体和正方体胡体积公式

长方体的体积=长×宽×高,V=abh 正方体的体积=棱长×棱长×棱长。V=aaa=a3(a的立方)长方体体积=底面积×高 V=Sh(设计意图:公式的对比性记忆,学生看后一目了然,印象深刻。)

七、教学反思:

这节课有多媒体的帮助,相对来说比起以前的教学更加胡形象化国,便于学生的理解,以前往往是直接告诉学生体积的公式让学生记忆,现在更注重了学生对知识的理解。但是这节课教学后,我发现还是有很多不足的地方,可改良的空间很大。课程教学时,学生的课堂

气氛算是活跃,但是也有部分学生是趁机会开小猜的。对这些同学缺少了教育。课堂练习题的设计明显不好,题型穷乏,应该包括判断题,填空题,这能锻炼学生胡思维转换能力。对此,我有以下的感想:

1、学生对知识的理解程度。

学生通过形象的PPT胡演示过程,可将知识由抽象转化为形象,不仅有利于知识的理解,更能开发学生右脑的潜能,想象能力等。

二、培养了学生的科学精神和方法。

长方体和正方体体积(教学设计) 第7篇

青州云门书院双语学校 温庆慧

设计理念

1.探究学习。强调学生自己探究,自己体验,在探究中感知知识的产生过程。

2.合作学习。重视学生的原有知识水平,充分发挥群体中每个成员的作用,通过学生交流加深知识的理解,从而正确的运用所学的知识解决实际问题。

3.培养学生归纳推理,抽象概括的能力。学习目的

1.理解并掌握长方体和正方体体积的计算方法。

2.能运用长、正方体的体积计算解决一些简单的实际问题。

3.培养学生归纳推理,抽象概括的能力。

教学重点

长方体和正方体体积的计算方法。

教学难点

长方体和正方体体积公式的推。教学过程

一、复习准备。

1.提问:什么是体积?

2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排。

教师提问:拼成了一个什么形体?(长方体)

这个长方体的体积是多少?(4立方厘米)

你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)

如果再拼上一个1立方厘米的正方体呢?(5立方厘米)

谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位。今天我们

来学习怎样计算长方体和正方体的体积。

二、学习新课。

(一)长方体的体积【演示动画“长方体体积1”】

1.拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆

出的长方体的长、宽、高。

2.学生汇报,教师板书:

教师提问:这些长方体有什么共同点?(体积相等)

不同点?(数据不同)

为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位——

12个1立方厘米)

教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?

师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1

立方厘米的正方体。同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层。

3.【演示动画 “长方体体积2”】

第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积。

一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层

第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体。

一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层

第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积。

一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层

思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长

方体的体积有没有关系?是什么关系?

(长方体的体积正好等于它的长、宽、高的乘积)

教师板书:长方体的体积=长×宽×高

教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:

板书: V=abh.出示投影图:

4.自学例1.一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?

7×4×3=84(立方厘米)

答:它的体积是84立方厘米。

(二)正方体体积。

1.【演示课件“正方体体积”】 教师提问:此时的长,宽,高各是多少? 变成了什么图形?

这个正方体的体积可以求出来吗?

2.练习

棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米)

棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米)

3.归纳正方体体积公式。

教师板书:正方体体积=棱长×棱长×棱长。

用V表体积,a表示棱长

V=a〃a〃a或者V=

4.独立解答例2.光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?

(分米3)

答:体积是125立方分米。

(三)讨论长方体和正方体的体积计算方法是否相同。

学生归纳:因为正方体是特殊的长方体。在正方体中长,宽,高都相等,所以公式中

b,h都变为a.变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高。

三、巩固反馈。1.课本43页“做一做” 2.判断正误并说明理由。

(1)一个正方体棱长4分米,它的体积是:(立方分米)()

(2)一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米。()

四、课堂总结。

今天这节课我们学习了新知识?谁来说一说?

五、课后作业。

1.一块砖的长是24厘米,宽是12厘米,厚是6厘米。它的体积是多少平方厘米?

长方体和正方体体积(教学设计) 第8篇

笔者认为, 概念教学的重点, 是要引导学生经历自主探究这一过程, 拓展数学思维, 实现具体到抽象的过渡。现以《长方体和正方体的体积》教学片断为例, 谈谈自己的实践及反思。

一、有效探究, 初步感知概念

概念的本质是抽象的, 对于小学生来说, 存在着理解难度, 容易造成认知障碍, 为克服这一障碍, 教师就要通过设计有效的探究活动, 让学生理清思路, 从中理解并建立初步的概念感知。

《长方体和正方体的体积》的教学重难点, 是要让学生准确把握体积这一概念的基本要素:体积到底和什么有关?为此, 我设置如下课堂教学环节。

【片断一】

师:观察以下实物图 (如图1) , 每个小正方体体积为1cm3, 那么拼出来的各个图形的体积是多少?为什么不相同?

学生通过点数小正方体的个数, 得到初步结论:一个物体的体积与单位体积的个数有关。接下来我呈现反面素材, 让学生思考: (如图2) 下面物体的体积是多少?有什么异同?

学生发现虽然三个物体体积相同, 都是由6个小正方体组成, 但形状各不相同。

师:仔细想想, 为什么相同体积的物体, 形状却不相同?

生:因为体积的大小和形状没有必然关系。

综合图1、图2中的6个物体, 学生再次得出结论:一个物体体积的大小, 取决于这个物体所包含的单位体积个数的多少。

通过以上环节的探究, 学生对体积的概念要素有了初步的感知, 并初步建构长方体和正方体体积模型, 为下一步的探究活动做好铺垫。

二、高效探究, 积累概念表象

在课堂探究中, 教师要抓住概念的本质内涵, 给学生积累丰富的概念表象, 提升其想象、推理、归纳、判断等数学思维能力, 为下一步抽象概念奠定基础。

【片断二】

师:小组讨论下用什么方法计算长方体的体积。

生:用体积为1cm3的正方体进行拼摆, 摆满整个长方体, 数数有几个正方体就能得到长方体的体积。

师:还有没有其他方法?

生:不用拼摆那么麻烦。测量一下长度就可以了。

师:说说你的想法?

生:先测量长度, 就可以知道能拼摆多少个体积为1cm3的正方体, 就可以得到长方体的体积。

师:观察图3所示的长方体和正方体, 怎么计算它们的体积?你发现什么?

生:只需要摆一行长、宽、高就行了。

生:不需要拼摆。只需要知道长、宽、高就行了。

师:长方体体积和什么有关?你怎么求的?正方体体积呢?

生:长方体的体积和长、宽、高有关, 体积等于长乘宽乘高。

生:正方体的体积与棱长有关, 正方体的体积等于棱长乘棱长乘棱长。

师:你怎么证明这个猜想?分组活动后交流。

生:我拿27个体积为1cm3的正方体, 能够摆出棱长为3cm, 体积为27 cm3的正方体;我拿60个体积为1cm3的正方体, 能够摆出长、宽、高分别为5cm, 4cm, 3cm, 体积为60cm3的长方体。

通过验证学生很快得到结论, 从而获得长方体和正方体体积的计算公式。

在以上环节中, 学生对数学概念积累了丰富的表象, 层层深入本质, 一步步逼近真相, 发展了想象、猜想、验证、归纳思考的数学思维, 实现了高效探究。

【教学反思】

《长方体和正方体的体积》教学中, 我紧紧围绕一个物体的体积与什么有关展开探究, 抓住体积的概念本质, 让学生经历由方法到策略的建构过程:先由动手拼摆到想象拼摆, 明确体积的要素, 使想象思维得到开发和运用;再从猜想到验证, 经历长方体和正方体体积探究过程, 数学策略得到提升;最后由验证到归纳, 运用字母符号表示长方体和正方体的体积公式, 实现长方体和正方体体积的符号化, 使其数学策略方法整合嫁接, 由此, 使表象积累飞跃到符号再现, 完整架构出体积教学的思维地图, 使学生对数学概念知其然, 还能知其所以然。

由此可知, 数学概念教学离不开学生个体的自主探究。教师一方面要加强对学生自主探究能力的开发, 另一方面则要引导学生经历概念的自主探究过程。在这个过程中, 带领学生经历分析思维与综合思维的双重过程, 突出数学思想方法的渗透, 帮助学生建构概念, 提高数学素养。

长方体和正方体体积(教学设计) 第9篇

关键词:小学数学;数学思想;感悟

一、创设问题情境,引导学生感悟“再创造”思想

在“正方体和长方体体积计算”课堂教学中,教师可以利用相关的器材,构建不同类型的长方体、正方体,二者组合下的不规则立体图形,并利用实物,引导学生准确计算正方体、长方体各自的体积。当然,教师也可以优化利用多媒体教学工具,创设良好的教学情境,向学生展示关于“正方体、长方体”的图片,刺激学生感官,留下直观印象,对新课产生浓厚的兴趣。以“积木”为例,教师可以巧妙地引导学生灵活应用所学的知识,促使新旧知识相互联系,优化利用正方体体积公式,准确推导出长方体体积计算公式。换句话说,“积木”思想属于再创造思想的一种,引导学生优化利用正方体特征构建长方体,属于数学思想中的再创造思想。教师要充分意识到“再创造”思想的重要性,多角度、多层次引导学生感悟“再创造”思想,降低数学问题难度,激发学生学习兴趣,准确理解“正方体与长方体体积计算”方面的知识点,完善已有的知识结构体系,将相关的知识灵活应用到实践中。在此过程中,为了更好地引导学生感悟“再创造”思想,教师要结合班级学生已有水平,巧设问题情境,引导学生学习新课题。比如,运用三个边长为1厘米的正方体积木构建出两个长方体、一个形状不规则的立体图形,那么所搭建图形的体积又会是多少呢?教师需要扮演好引导者、协作者等角色,巧妙地引导学生回忆已经学过的相关知识,去寻找解决该问题的方法,进而促使学生更好地感悟“再创造”思想,意识到解决问题时联系实际的重要性,注重理论与实践的有机融合。

二、借助问题探究,引导学生感悟“建模”思想

在课堂教学过程中,教师要结合长方体、正方体体积计算相关知识点,全方位分析小学生的兴趣爱好、个性特征、心理特征等,合理安排教学内容,采用多样化的教学方法,为学生提供更多参与课堂教学实践的机会,增加师生、生生互动,引导学生更好地学习数学知识与技能。在学习相关章节内容的时候,教师可以根据班级学生已有水平,合理划分小组,共同探讨计算长方体体积的方法,可以两个学生一组,将12个正方体搭建成一个长方体,体积为1 cm3。在探讨过程中,教师要把课堂还给学生,引导他们自主思考,共同合作,想出多种搭建方法,教师也要借助多媒体教学工具,引导学生对比、分析对应的图形,激发他们的数学思维,直观、形象地理解每排个数,具体的排数等,进而知道每排个数、层数等和长方体长、宽、高等之间有着怎样的关系,得出正确计算长方体体积的方法。而这个过程被叫做建模过程,学生需要亲自操作,借助拼摆、对比,对比分析每排数、层数等和长方体长、宽、高等的联系,甚至和长方体体积的关系,优化利用已掌握的知识点,得出长方体的体积,即长×宽×高。学生也可以把这种“数学建模”思想应用到其他章节的学习,迅速找到解题的突破口,提高自身的解题能力。

三、注重交流探讨,引导学生感悟“演绎”思想

在探讨长方体体积计算公式的过程中,教师可以巧设问题情境,比如,长方体的体积就是其长、宽、高的乘积吗?通过反问,调动学生学习新课的积极性,对该问题产生浓厚的兴趣,适当点拨学生,重复实验、验证,得出相关结论。在验证这一结论的时候,可以让学生跳出定势思维的圈子,发散他们的思维,更好地感悟“演绎”思想,提高他们的认知水平,能够站在不同的角度去解决遇到的问题,培养他们的逆向思维。在此过程中,教师要坚持层层递进的原则,激发学生的探索欲望,引导他们不断思考,思考在长方体长、宽不变的情况下,但高却处于动态变化中,来验证这一结论是否正确。长此以往,学生的思维也会更加缜密,不断完善已有的知识结构体系,构建知识框架,更好地学习数学学科。

总而言之,在“正方体和长方体体积计算”课堂教学中,引导学生感悟不同类型的数学思想是非常必要的。在此过程中,可以帮助学生理性地认识客观事物,在学习数学知识、技能的同时,充分意识到数学在日常生活中的重要性,引导学生借助实际问题,去发现数学,并有效解决遇到的问题,学会多角度去看待客观世界,培养学生多方面素养,促进他们德、智、体等全面发展,为进入更高阶段的学习奠定坚实的基础。以此,改变小学数学课堂教学现状,提高课堂教学效率与质量,构建高效课堂,更好地践行素质教育提出的客观要求。

参考文献:

[1]唐玉霞.在问题研究中感悟数学思想:西师版小学数学“长方体和正方体的体积计算”教学导引[J].教育科学论坛,2014(10):12-14.

长方体和正方体的体积教学设计 第10篇

【教学内容】

《义务教育课程标准实验教科书·数学》(苏教版)六年级上册第第二单元27页的内容.【教材分析】

这部分教材是学生已经掌握长方体和正方体的特征,了解体积的意义,初步掌握长方体和正方体体积公式的基础上,引导学生进一步探索长方体和正方体的体积公式,在探索中通过分析、比较、归纳,掌握“长方体(正方体)的体积=底面积×高”这一直棱柱体积的通用公式。“练一练”和练习六第4—8题,先直观看图计算,再比较长方体(正方体)的体积=底面积×高与前面所学长方体、正方体体积计算方法的不同和联系,在比较中巩固上述公式的推理过程,然后在练习中解决一些实际问题。这样由浅入深,既巩固了长方体(正方体)的体积=底面积×高的体积公式,又使学生学会解决实际问题,体会到数学在日常生活中的应用,感受数学的价值,还发展学生的空间观念。

【教学目标】

1、使学生在具体的情境中,经历比较、讨论、验证、归纳等数学活动过程,探索并掌握长方体(正方体)的体积=底面积×高的计算方法,能解决与体积计算有关的一些简单实际问题。

2、使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考。

3、使学生进一步体会图形学习与实际生活的联系,感受图形学习的价值,提高数学学习的兴趣和学好书学得的自信心。

【 教学重点】 探索并掌握长方体(正方体)的体积=底面积×高的计算是本节课的重点。

【教学难点】如何推导长方体和正方体的体积公式。

【教学过程】

一、观察直观图形,认识并计算长方体、正方体的底面积

(出示长方体、正方体)谈话:同学们,我们学过了长方体、正方体的特征和表面积。请同学们在小组中找出这两个图形的底面分别是哪两个面?

根据学生的回答,教师在图中涂色呈现出底面。

提问:这两个图形的底面积是哪两个面的面积?

根据学生的回答,教师板书“底面积”定义。

再提问:怎样计算长方体和正方体的底面积?

根据学生的回答,明确长方体、正方体底面积的计算方法,教师板书计算公式。

【设计意图】【数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上,在学生理解和掌握长方体、正方体特征和表面积基础上,让学生自己归纳、探索底面积的定义和计算公式,体现数学学习是一个再创造过程。】

二、探索长方体(正方体)的体积=底面积×高的计算方法

1、提问:我们前面学习的长方体、正方体体积是如何计算的?

根据学生的回答,教师板书体积公式

2、谈话:长方体和正方体的体积也可以这样来计算:长方体(正方体)的体积=底面积×高

3、提问:在小组中讨论为什么可以这样来计算长方体、正方体的体积? 预设:学生可能会出现以下问题:

1.对底面积认识不够,不明白底面积是什么? 2.对长方体和正方体通用的公式,不是很理解。

学生在小组中讨论得出结论,教师帮助学生进行相应整理

4、请同学们尝试用字母表示这个公式

根据学生的回答,教师板书字母公式

【设计意图】【观察、思考、讨论、交流等都是《数学课程标准》所提倡的数学活动。在这里,先把公式直接告诉学生,让学生在借助已有知识的基础上,凭借他们自己的经验,在小组中充分交流、合作,在探索、比较中充分理解长方体(正方体)的体积=底面积×高的推理过程。】

三、分析、比较加深长方体(正方体)的体积=底面积×高的理解

1、出示“练一练”第1题

⑴、学生独立思考完成

⑵、讨论:这样计算长方体和正方体的体积与原来的计算方法有什么不同?有什么联系?

2、出示“练一练”第2题

独立做题,在班内共同订正

【设计意图】【在学生独立解决问题中,关注这种计算公式与原来计算公式的不同与联系,进一步巩固长方体(正方体)的体积=底面积×高的计算方法,感受数学的魅力。】

四、巩固练习、拓展应用

1、做练习六第4题

⑴、借助实物帮助学生理解占地面积的实际含义

⑵、使学生明确“所占空间”就是储物柜的体积

⑶、独立做题,在班内共同订正

【设计意图】【让学生在实际应用中,巩固用“底面积×高”计算长方体体积的方法,感受这种方法在解决实际问题过程中的作用。】

2、做练习六第5题

⑴、结合图让学生指一指这根横截面的位置

⑵、引导学生想象:如果将这根木料竖起来,木料的横截面就是这个长方体的哪个面?木料的长与竖起来的长方体的高有什么关系?可以怎样计算它的体积?

【设计意图】【引导学生联系“长方体体积=底面积×高”这一方法,理解用“横截面面积×长”计算长方体体积的方法,有利于学生从不同角度加深对体积计算方法的理解。】

3、做练习六第6题

预设:学生对黄沙铺成的形状理解不够,不知道是什么形状,找不出它的宽和高,无法计算。

⑴、使学生明确黄沙铺成的形状是长方体,铺的厚度是长方体的高

⑵、明确要求“用方程解”

4、做练习六第7题 预设:学生可能对计算花坛内泥土体积理解不够,不知道计算要从里面量数据。⑴、弄清题中两个问题的联系与区别

⑵、引导学生寻找计算花坛所占空间大小以及花坛内泥土体积所需要的条件

⑶、提示:从里面量,花坛的高没有变,但底面正方形的边长只有1.3-0.3×2=0.7(米)

5、做练习六第8题

⑴、合理选择相应的信息解决实际问题

⑵、独立思考,在班内共同订正

五、激励评价,问题延伸

长方体和正方体体积(教学设计) 第11篇

通过一段时间对微课的了解以及使用微课进行教学和指导学生运用微课进行学习和复习,我设计了一堂关于运用微课进行教学的展示课《长方体正方体的体积》。

我在网上搜来的成功微课运视频,将长方体的形成过程,由点到线、由线到面,由面到体形象直观的展示给学生,学生对长方体的体积的计算方法的学习兴趣浓厚、理解起来简单明了。在此基础上,教学中进一步通过动画引入正方体体积计算,学起来浅显易懂。学完微课,我设计了师生通过解决“你学到了什么”这一问题,在回顾交流中掌握了教学重点,通过解决“你还有哪些困惑”这个问题,师生在探索讨论中突破了教学难点。经过课后检测分析,教学效果特别不错。

虽然还有需要改进的地方,但通过展示课,我更进一步认识到怎样运用微课才能使数学课堂教学更加有效,为下 一步的改进提供真实有力地素材。

长方体和正方体体积的教学反思 第12篇

本节课教学时我主要运用操作实验法、引探发现法、小组合作学习法等多种方法,给学生提供自主探索的平台,让学生通过小组合作学习,操作实验、观察、猜想、发现推导出长方体体积计算公式,让学生亲身经历知识的形成全过程,从而证明了自己的能力,品尝到成功的喜悦。培养学生的合作意识和实践能力。

体积对学生来说是一个新概念,由认识平面图形到认识立体图形,是学生空间观念的一次重大的发展。然而此时,学生对立体的空间观念还很模糊,要注意加强实物或教具的演示和学生的动手操作,以发展学生的空间观念,加深对长方体计算公式的理解。教学中,我先通过切开一个长3厘米、宽3厘米、高1厘米的长方体和棱长为2厘米的正方体,看看它们各含有多少个1立方厘米的体积单位,引入计量体积的方法。但是在很多情况下,是不能用切开的方法来计量物体的体积的。于是我给了学生若干个1立方厘米的小正方体,放手让学生摆放出不同的长方体,并把长、宽、高的数据填入表格中,启发学生思考,根据记录的长、宽、高,摆这个长方体一排要摆几个小正方体,要摆几排,摆几层,一共是多少个小正方体。再引导学生进一步思考,这个长方体所含小正方体的个数,与它的长、宽、高有什么关系。长方体的体积与长、宽、高的关系这一内容,比较抽象,教材中用6个小正方体让学生摆,只能摆3种,不利于学生找出规律。我大胆地让学生用12个小正方体摆,学生摆到了8种,并记录整理数据,提高学生的兴趣和学习积极性,更有利于学生悟出长方体的体积与长、宽、高的关系,这样做可能有人认为费时,但我认为这样做值得,因为这样做能让他们在认识数学、理解数学的过程中更好地发展认知水平,提高了学习能力。最后,通过学生自己比较、发现长方体体积的计算公式,并用字母表示。在教学完长方体的计算公式后,继续启发学生根据正方体与长方体的关系,联系长方体体积的计算公式,引导学生自己推导出正方体体积的计算公式。这种实际操作,培养了学生勤于思考和勇于探索的精神,激发学生的探究意识,增强数学的吸引力。

长方体和正方体体积(教学设计) 第13篇

一、创设情境, 产生问题

“科学知识的增长永远始于问题, 终于问题。”探究性学习需要学生在学习情境中通过观察、阅读, 发现问题。因此, 教师要善于创设问题情境, 巧妙地把数学学习内容转换成具有潜在意义的问题, 在新知内容与原有认知结构之间制造冲突, 把学生引导到迫切希望探个究竟的情境之中。

片断1:

计算一下, 右面长方体有几个1立方厘米的小正方体?

这些长方体的体积是多少?

你是怎样计算它们的体积的?

反馈交流, 得出:含有多少个小正方体, 它的体积就是多少。

出示:右面长方体的体积是多少?

生1:不知道有多少个体积单位, 不好求。

生2:要把它切成若干个体积是1立方厘米的小正方体就知道了。

生3 (表示反对) :不行, 把它切成小正方体就破坏这个长方体了。

师:是啊, 如果是一台洗衣机、一个冰箱, 我们总不能把它们分割啊, 那又该怎么办呢?

从而引起学生的共鸣:必须找出长方体体积的计算方法。

学生已经掌握了看物体包含几个体积单位的方法求体积, 但通过实例发现用这种方法存在的局限性, 这就引发了他们进一步探求新知的内驱力。

二、明确问题, 展开探究

学生开展自主探究活动是探究性学习的核心部分, 教师有针对性地指导学生围绕问题展开探究活动, 帮助他们分析问题, 寻求假设, 进行实验, 以求解决问题。在活动中要注意让学生充分发表自己的见解, 体验探究的乐趣。学生独立探究的过程, 不单单获得了新的数学知识, 更能学习科学研究的方法, 增强自主意识和克服困难的意志。值得注意的是, 既要注意体现学生在学习过程中的主体地位, 但当学生在探究过程中遇到困惑或陷入困境时, 教师要适时予以帮助。

片断2:

师:你猜猜长方体的体积和什么有关?

生1:与拼的小正方体个数有关。

生2:与长方体的长、宽、高有关。

(课件动画演示:长、宽相等时, 越高, 体积就越大;长、高相等时, 越宽体积就越大;宽、高相等时, 越长体积就越大。)

师:你发现了什么?

生1:我发现了长、宽、高发生变化后, 体积也发生了变化。

生2:说明长方体的体积与长、宽、高有关系。

师:那么到底有着什么样的关系呢?我们还是通过自己的探索来发现吧。

(学生操作:摆一摆, 四人小组每人用12个棱长1厘米的立方体摆成形状不同的长方体, 摆完后填表)

组内交流:发现了什么?

从猜想 (假设) 出发, 并通过课件动画演示初步验证猜想, 让学生明白与长方体的体积相关的量, 但这并不能说明它们之间存在什么样的关系, 这既为学生探究打好了基础, 也激发了学生进一步深入探究的欲望。学生通过拼摆出长、宽、高不同, 但体积都是12立方厘米的长方体, 在教师的引导下逐步发现了长方体体积与长、宽、高之间的关系。

三、归纳总结, 达成共识

学生进行了充分的探究, 但探究的结论对他们来说心中没底, 不知是否正确, 这时要组织学生交流各自探索得出的结论及问题的解决过程, 让他们不断修正错误的观点, 最终达成一致。在此过程中要特别注意学生的原创思维, 学生在交流中, 也明白了这样一个道理:科学研究并不是一蹴而就的, 往往需要经过无数次实验, 经历艰辛而又曲折的过程才能抵达彼岸。

片断3:

(展示小组填写的表格)

师:各组谈谈自己的收获。

生1:我们发现所拼成的长方体体积都一样。

(引来“不满”的声音:用的小正方体个数都一样, 体积肯定一样)

生2:我们发现拼成的长方体的每排个数、排数、层数其实就是长方体的长、宽、高。

生3:我们发现长方体的体积的确和它的长、宽、高有关。

师:那长方体体积和长、宽、高之间到底有什么样的关系呢?

生4:体积就是用每排个数、排数、层数相乘的积。

生5:也就是长、宽、高相乘的积。

学生的发现可能是有价值的, 也可能是无价值的, 但在学生的不断修正之下, 最终通过有用的信息得出结论。

四、验证结论, 建立模型

此环节为知识迁移、形成和发展的过程。学生对所得出的结论是否有普遍性心存疑虑, 适时组织学生验证, 以事实来证明结论的适用性。这样, 不但让学生进一步体验了探究的完整过程, 而且让学生明白了任何真理都必须经过实践的检验这一道理。

片断4:

师:你们的发现是否正确呢?实践是检验真理的唯一标准, 还是在实践中去发现和检验吧。

(学生再次操作:任意拼一个长方体, 看长、宽、高分别是多少, 利用刚发现的规律计算它的体积, 验证规律是否正确。)

(总结公式长方体体积=长宽高

长方体和正方体体积(教学设计) 第14篇

在“变教为学”的备课中,教师应抓准一节课的学习目标,并围绕“学什么”“怎么学”两个问题展开备课。在备课中寻找知识的源头、分析知识的属性,并设计出一系列与之对应的学习活动。

一、对长方体体积的分析

以人民教育出版社出版的《义务教育课程标准实验教科书·数学(五年级下册)》(以下简称“教科书”)为例,长方体体积学习是学生第一次接触立体几何图形和体积概念,这是学生立体几何学习的起始。(见表1)人们常说:“好的开始是成功的一半。”因此,长方体体积的学习对学生今后的发展具有重要的教育教学意义。起始时,学生学习立体图形的好坏程度,决定其今后对立体图形学习的兴趣与动机。小学长方体体积认知程度也将影响着学生初中乃至高中空间几何体的学习。所以,长方体体积学习要求教师在备课中从历史视角、文化视角深入挖掘,发现知识的“本质性”“关联性”“文化性”,让学生知其然并知其所以然。

从历史的视角看,长方体体积公式早在我国著名的《九章算术》第五章“商功章”中有所记载:“方自乘之,以高乘之,即积尺。”[2]意思是用边长和边长相乘再乘以高,就是体积的大小了。由此可见,体积公式很早就被古人发现并使用它计算了。除此之外,《九章算术》中还给出了其他几何体体积的计算公式。比如:球体积。另外,数学课程不仅仅是程序化、模式化反复练习直至熟练的计算和严谨的逻辑推理,数学课程还有它的文化性,这里的文化性是与工具性相对的。强调数学概念背后的故事,概念背后是否与人类思维方式、人的情感有联系。比如:体积是什么意思?体积中的“积”是否和乘积中的“积”一样?“体积”在古代怎么说?《九章算术》第五章讲述几何体的体积,为什么叫商功二字?体积的下位概念,长、宽、高是什么意思?为什么叫长、宽,而不是长、短?这些小问题,都值得教师在备课中思考。

从文化的视角看,乘积中“积”本意是“垛”,[3]而“垛”在《现代汉语词典》中解释为整齐地堆,我们常说的垛子的意思就是整齐地堆成堆。《说文解字》中对“积”的解释为:“积,聚也。”那么,积有整齐地由少到多变化的意思。因此长方体体积可以被看作是由一个个长方形从下至上整齐地堆积而成的,所以命名为体积。“体积”一词在商功章羡除术刘徽注:“虽背正异形,与常所谓鳖臑参不相似,实则同也。”“故方锥与阳马同实。” [4]由此可以看出,体积在古代的叫法是“实”。“实”作为古算用语有多义。实,与“虚”相对之义,它表示内部完全填满而没有空隙的实体。由此,我们可以推断出“实”表示的是空间区域,仅用于三维空间。如果教师在让学生理解概念时,理解它背后的文化,相信对学生的学习会有很大益处。

听课观察中发现,教师问:“同学们,长方形较长的一边叫作长,较短的一边叫什么呢?”学生齐声回答:“短。”长方形中,长、宽这两个概念,表面上看没有什么联系,实质上蕴含着数学文化。“长”在《九章算术》中被解释为“广”,也就是人们视野范围的广度,就是长。而现在所说的“宽”在《九章算术》中被解释为“从”,“从”字在古代又同横纵的“纵”,纵的意思指的是竖、直,南北的方向,与“横”相反。由此可见“宽”字的来龙去脉了。如果教师能让学生知道“宽”字背后的文化,相信学生就不会认为长方形较短的一边叫作“短”了,否则的话,很难说服学生。比如:《九章算术》中第五章讲述几何体的体积,书中以“商功”命名此章。如果光看字面意思,很难理解与体积有什么联系。李籍在《九章算术音义》中写道:“商,度也。以度其功庸,故曰商功。”功,通“工”,指工程量或人工数。大致意思是说,商是度量的意思,度量工程量的多少即关于各种工程中的体积计算。这样就沟通解释了“商功”与“体积”之间的联系。应该相信,虽然概念的命名是人规定的,但是它不是盲目的,一定是和当时人的思维方式、人的情感、社会生活、大自然有所联系而命名的。作为教师,我们应当找到这样的联系并能够解释,沟通字面解释与背后文化的联系。

二、对其他教材的分析

除了从历史、文化的视角分析长方体体积,教师还要关注教科书和课程标准。在我国的教科书中对体积的定义为物体所占空间的大小。美国加州的教材中对于长方体体积的学习,先有对长方体的认识,然后指出长方体的上部、前部、侧面。再利用三视图,从不同角度看长方体,然后给出定义。美国加州五年级教科书中定义为体积是三维空间中所占空间的量,长方体体积被正方体单位(cubic units)测量,长方体体积的学习与维数建立联系。[5]我国现行的《义务教育数学课程标准(2011年版)》(以下简称“课标(2011年版)”)中提出,通过观察、操作,认识长方体、正方体、圆柱、圆锥。结合具体情境,探索并掌握长方体、正方体、圆柱、圆锥的体积和表面积的计算方法。[6]美国加州共同核心标准中指出,学生理解体积要放在三维空间中,理解体积被一个接一个的相同大小正方体的单位(standard units)填满,既没有空隙也没有重叠,在这样的情况下,小正方体单位的数量就是体积的大小。学生要理解长方体的体积被一个个小正方体测量,这也就是当长方体被填满后的小正方体的个数就是长方体的体积。在探索的过程中,分解三维图形,把长方体看成由一层一层的小正方体组成的图形。[7]

《美国学校数学教育的原则和标准》(NCTM)(以下简称“标准”)中指出:“帮助并加强学生在测量二维和三维图形时发展几何直观。”[8]由此可见,在实际教学中教师应在观察、操作的基础上以实验几何为主线探索长方体体积公式,建立学生的三维空间观念,发展学生的几何直观。

长方体体积的学习实际上是建立学生三维空间观念和发展几何直观的起始,在今后初中学段,学生还会接触到更多的几何体,比如:球、六棱柱、四棱锥等。还会从不同角度观察其他不规则几何体,绘制三视图。初中主要是对柱、锥、球进行初步认识。高中学段,要对柱、锥、台、球、简单几何体的结构特征有所把握,学习中心投影和平行投影,并在平行投影下从不同角度观察空间几何体,利用斜二测法绘制空间几何体的直观图,计算空间几何体的表面积和体积及简单几何体的体积。由此看出,体积的学习是层层递进、一脉相承的,从简单的长方体体积的计算,再到柱体、锥体、台体、球体及组合体的计算,学生的空间几何观念,也随着年龄的增加不断增强。

三、教学中的活动设计

根据瑞士心理学家让·皮亚杰提出的“学生有逻辑的理解概念要在学会数学计算之前”[9]的观点,也就是说学生概念理解比计算重要得多,所以本节课的总目标制定为明晰体积概念,探索体积公式。体积属于规律性知识,也就是不以人的意志为转移的客观存在,对学习者来说是确定的,这部分知识具有“不可变”的特点。所以认识这部分知识的基本方法是发现(discover),而发现知识的重点要放在“观察”上。学生的思维方式应该是观察对象形成动机、产生想法、交流、假设、实验与解释、判断、关联与应用的过程。根据这样的基本原则,那么学生就要经历以下学习活动。

第一是建立观察对象、激发学生的动机。动机与兴趣是学生学习的动力,激发学习动机是非常关键的一步。因此,在教学一开始,教师可以给学生讲一个故事。

一个非常有名的乐队叫作几何家族,他们计划在学校开一场音乐会,现在需要用卡车运送搭建音乐会舞台的器材,需要将一个个正方体的箱子装进长方体的卡车中。(如图1)

这个过程处于课程刚刚开始阶段,学生要做的是观察,观察教师演示的过程。教师可以用一个大长方体鱼缸模拟卡车,然后依次放入一个个小正方体,让大长方体被一个个小正方体填满,复现故事场景。这个过程从知识习得的角度和历史的角度来说,是为了让学生体会到体积在古代被称为“实”,表示内部完全填满而没有空隙的实体。让学生利用小正方体模具是根据著名瑞士心理学家让·皮亚杰提出的认知发展理论(Theory of Cognitive Development)。他将儿童的认知发展过程分为了四个阶段,分别是感知运算阶段、前运算阶段、具体运算阶段、形式运算阶段。[10]五年级的学生认识体积概念处在具体运算阶段(Concrete Operational Stage),学生的思维阶段是从具体的、形象的表象思维逐渐过渡到抽象思维。这一时期的顺利过渡,会对儿童学习“体积”、对抽象概念的理解起到重要作用。在这一时期,儿童在心理发展和思维特征上具有逻辑性,但是在具体活动中仍然离不开具体事物的支持。这一原则将成为儿童思维水平的判断依据,也是教师教学设计的重要理论依据,在具体的教学实践中,教师要以具体事物作为儿童理解体积并推导体积公式的依托。

第二是产生想法。任务一是通过刚才教师的演示,你观察到了什么?你是如何看待长方体的形成的?长方体体积如何计算?四个人一小组,可采取画图、用文字写下来等多种形式和同伴相互讨论。经思维碰撞后对于体积公式的答案是唯一的,但是表达形式可能是多元的,所以,教师应允许多元的表达,多样的形式。在用不同的活动形式进行充分讨论之后,学生要以小组为单位给全班汇报展示,并说说本组每一位同学的想法。这种活动形式具有较强的灵活性。

第三是实验解释。任务二是利用小正方体模具解释如何理解长方体体积的形成,利用小正方体模具解释体积公式是如何得到的。学生可能会演示并解释小正方体填满长方体的过程。(如图2)先从一个小正方体拼成一行,从一行再到一个面。三个同样的平面叠加,填满整个长方体,最终得到一个完整的长方体,小正方体的个数也就是长方体体积。

之所以让学生解释长方体体积的形成过程,是根据荷兰数学教师范希尔夫妇提出的几何思维水平理论。其中包括学生几何思维发展的五个水平和与之对应的学生几何学习的五个阶段。[11]学生几何思维发展的五个水平分别是视觉化(visualization)、分析(analysis)、非形式化演绎(inference)、形式化演绎(deduction)、严密性(rigor);与之对应的学生几何学习的五个阶段分别是熟悉(familiarization)、指导定向(guided orientation)、语言表达(verbalization)、自由定向(free orientation)、整合(integration)。五年级学生处在几何思维的分析期,并由分析期逐渐转化为非形式化演绎期。所以,在长方体体积的概念学习上,要让学生经历体积概念的分析和理解过程,并对体积形成过程进行简单的非形式化演绎,这是教师教学设计的重要依据。学生对概念的学习不是简单的“听懂、记忆、背诵”过程,深入理解、消化概念,明晰概念背后的本质,对学生今后学习几何知识具有重要意义。在公式的探索方面,让学生经历非形式化演绎的过程,明确长方体体积公式的产生。在这个环节中,活动形式为先小组讨论再全班汇报。在汇报的过程中,教师要给学生立规矩。比如:“汇报的同学要面向大家,说话要保证班里的每一位同学都能听清楚。”“当你想指出别人不足的时候,请先说出他的一个优点。”教师引导学生,先说他人优点再指出他人的不足之处。另外,小组汇报是提高学生当众讲话能力的好机会,这种活动方式有助于培养学生的自信心和演讲能力。

第四是判断假设。根据上一个任务全班同学完成的情况,判断大家说的长方体体积的对错,是否同意汇报同学的观点,是否有其他的异议。

第五是关联应用。结合相应的练习题,学生独立思考并计算长方体体积。

比如:一个汽车上的油箱,长8分米,宽3.5分米,高5分米,这个油箱可以装多少升汽油?(如图3)

第六是拓展。任务三是有人说:“周长与面积之间有某种关系,表面积和体积也有某种联系,你同意吗?”“解释正方体体积的形成过程,写出正方体体积公式。”这个任务布置的目的是让学生试图探索长方体体积和长方形面积之间的关系。从已有周长和面积入手,周长反映物体外部而面积反映物体内部,而表面积和体积恰巧也有“外”与“里”的关系。这样就把周长与面积、表面积与体积联系在一起了,在英文文献中也有记载表明,学生在学习的过程中要理解四个概念之间的联系。[12]

以上教学活动仅供教师参考,教师可根据本班学生情况而定。依据以上分析,本节课关于学习目标、学习任务、学习方式和学习活动的设计可以用表格(表格略)的形式呈现。

总之,要想在变教为学的课堂中“突出本质、渗透文化、实现关联”,就要挖掘知识背后的故事,要想“让每一个学生受到关注,让每一个学生都有机会,让每一个学生都有活动”,就要设计出以“立德树人”为终极目标,并能突出数学本质的有效的活动。

参考文献:

[1] 卢江,杨刚.义务教育课程实验教科书·数学[M].北京:人民教育出版社,2004.

[2] 张苍,等编.九章算术[M].曾海龙,译.江苏:江苏人民出版社,2011.

[3] 郜舒竹.问题解决与教学实践[M].北京:首都师范大学出版社,2012(06):168.

[4] 李继闵.九章算术导读与译注[M].西安:陕西科学技术出版社,1998.

[5] California Mathematics Grade 5[M].The United States.McGraw-Hill Companies,2009:396.

[6] 中华人民共和国教育部制定.义务教育数学课程标准(2011年版)[S].北京:北京师范大学出版社,2012.

[7] California State Board of Education. California Common Core State Standards Mathematics[M]. California Department of Education,2010.

[8] 全美数学教师理事会著.美国学校数学教育的原则和标准[M].北京:人民教育出版社,2004.

[9] Piaget,J,Inhelder,B.&Szeminska,A.[Translated from the French by E.A.Lunzer],.The Child’s Conception of Geometry[M].New York: Basic Books,Inc,Publishers.1970.

[10] 莫雷.教育心理学[M].北京:教育科学出版社,2007.

[11] 鲍建生.数学学习的心理基础与过程[M].上海:上海教育出版社,2009.

[12]Joan D.Martin. A Study of Fourth Grade Students’ Understanding of Perimeter, Area, Surface Area, and Volume When Taught Concurrently[J].Mathematics Education Tufts University,2009(05):3354724.

相关文章
2024中考体育考试安全预案

2024中考体育考试安全预案

2024中考体育考试安全预案(精选13篇)2024中考体育考试安全预案 第1篇清涧分部2014年初中毕业学业理科实验操作、体育考试安全工作预案为...

1
2025-09-19
2024国培总结

2024国培总结

2024国培总结(精选9篇)2024国培总结 第1篇2017教师国培学习总结当今社会,教事业迅猛发展,各类培训数不胜数,而“国培”对于我们教育发...

1
2025-09-19
2024年单位与单位的新年联欢会主持稿及串词

2024年单位与单位的新年联欢会主持稿及串词

2024年单位与单位的新年联欢会主持稿及串词(精选5篇)2024年单位与单位的新年联欢会主持稿及串词 第1篇2018年单位与单位的新年联欢会主持...

1
2025-09-19
2024年上海市崇明县中考一模语文试题及答案

2024年上海市崇明县中考一模语文试题及答案

2024年上海市崇明县中考一模语文试题及答案(精选6篇)2024年上海市崇明县中考一模语文试题及答案 第1篇2017年崇明区初三一模语文试题(一...

1
2025-09-19
2010—2011学年度第一学期六年级语文教学计划

2010—2011学年度第一学期六年级语文教学计划

2010—2011学年度第一学期六年级语文教学计划(精选13篇)2010—2011学年度第一学期六年级语文教学计划 第1篇2010—2011学年下学期六年级...

1
2025-09-19
2011《农业农村工作知识》高频考点

2011《农业农村工作知识》高频考点

2011《农业农村工作知识》高频考点(精选12篇)2011《农业农村工作知识》高频考点 第1篇2011公考备考:《农业农村工作知识》高频考点2011-0...

1
2025-09-19
以案促改主持词

以案促改主持词

以案促改主持词(精选4篇)以案促改主持词 第1篇主持词同志们:根据市委要求,今天我们在这里召开“××局开展案件剖析做好以案促改工作动...

1
2025-09-19
2024致自己的励志说说

2024致自己的励志说说

2024致自己的励志说说(精选5篇)2024致自己的励志说说 第1篇人生,说到底,活的是心情。人活得累,是因为能左右你心情的东西太多。以下是...

1
2025-09-19
付费阅读
确认删除?
回到顶部