MF与次氯酸钠协同处理微污染水试验研究(精选4篇)
MF与次氯酸钠协同处理微污染水试验研究 第1篇
MF与次氯酸钠协同处理微污染水试验研究
摘要:通过在一体式膜反应器(MF)中投加强氧化剂次氯酸钠,考察MF与次氯酸钠协同处理微污染饮用水的处理效果.通过从浊度、色度、CODMn和UV410这4个指标,研究不同剂量的`次氯酸钠对MF与次氯酸钠协同处理微污染饮用水的处理效果.结果表明,从处理效果和经济两个角度,确定在原水浊度在3-8 NTU、色度30°-50°、CODMn5~8mg/L、UV2542.0-4.5cm-1时,反应器中强氧化剂次氯酸钠最佳投量为10mg/L.作 者:赵海鹏 唐玉兰 李敬宝 李保华 耿迎旭 刘海波 作者单位:赵海鹏(辽宁省水利水电设计研究院,辽宁,沈阳,110006)
唐玉兰,李敬宝(沈阳建筑大学辽河治理研究院,辽宁,沈阳,110006)
李保华,耿迎旭,刘海波(辽宁润中供水有限责任公司,辽宁,沈阳,110179)
期 刊:吉林水利 Journal:JILIN WATER RESOURCES年,卷(期):,“”(4)分类号:X52关键词:一体式膜反应器 强氧化剂 微污染水 膜污染
MF与次氯酸钠协同处理微污染水试验研究 第2篇
1 物理技术
1.1 吸附
吸附处理技术是指利用物质强大的吸附性能来去除水中污染物的技术。目前用于水源水处理的吸附剂有活性炭(AC)、硅藻土、二氧化硅、活性氧化铝、沸石、离子交换树脂,其中用得最多的是对水中有机污染物和臭味有较强吸附作用的疏水性物质——活性炭。
1.2 膜过滤技术
膜分离法是指用高分子薄膜作介质,以附加能量为推动力,对双组分或多组分溶液进行表面过滤分离的物理处理方法。目前常见的膜法有:微滤、超滤、纳滤、反渗透、电渗析、渗透蒸发、液膜及刚出现的毫微滤技术等。从膜滤法的功能上看,反渗透能有效的去除水中的农药、表面活性剂、消毒副产物、THMs、腐殖酸和色度等。纳滤膜用于分子量在300~1 000范围内的有机物质的去除,而超滤和微滤膜可去除腐殖酸等大分子量(>1 000)的有机物。因此,膜滤技术是解决目前饮用水水质不佳的有效途径[1]。
1.3 吹脱
吹脱是利用水中溶解化合物的实际浓度与平衡浓度之间的差异,将挥发性组分不断由液相扩散到气相中,达到去除挥发性有机物的目的。吹脱法具有费用低、操作简单的优点,但对难挥发的有机物去除效果差。
2 化学技术
2.1 预氧化技术
预氧化技术是指向原水中加入强氧化剂,利用强氧化剂的氧化能力,去除水中的有机污染物,提高混凝沉淀效果。常用的氧化剂有高锰酸钾、氯气、臭氧和高铁酸钾等。
氯是应用于自来水最广泛的氧化消毒剂,投加一定量氯气氧化可以控制因水源污染生成的微生物和藻类在管道内或构筑物中的生长。但是,氯气会和水中某些有机物反应产生大量的卤代烷和氯化有机物,且不易被后续的常规处理工艺去除。
臭氧是一种强氧化剂,在给水处理中有着很长的历史。最初用作消毒剂、控制色嗅味,现又用来去除水中有机物。通过预臭氧化不但可以使得难降解有机物转化为可生化降解有机物,还可以使得不溶性有机物转化为可溶性有机物,从而为后续生物处理提供有利条件。
高铁酸钾是近年来研究较多的氧化剂,它是一种优良的预处理药剂,在水处理过程中可以发挥氧化、杀菌、吸附等多功能的协同作用。刘伟等研究了高铁酸钾对有机物含量较高水源水的处理效果,结果表明:少量的高铁酸钾(0.5 mg/L~1.0 mg/L)预氧化即可显著提高混凝效果,出水剩余浊度明显下降。 水中色度、UV 254和氯仿生成量等有机物综合指标均随着高铁酸钾投入量的增加呈明显下降趋势[2]。
2.2 光化学氧化法
光化学氧化法是在化学氧化和光辐射的共同作用下,使氧化反应在速率和氧化能力上比单独的化学氧化、辐射有明显提高的一种水处理技术。属于光化学氧化法的有:光激发氧化,光催化氧化,光敏化氧化等[3]。光激发氧化法是以臭氧、过氧化氢、氧和空气等作为氧化剂,将氧化剂的氧化作用和光化学辐射相结合,可产生氧化能力很强的自由基。光催化氧化技术是以N形半导体为催化剂的一种光催化氧化。起光催化作用的N形半导体有TiO2,WO3,Fe2O3,TiO3等,TiO2因光化学稳定性和催化活性都很好,反应前后性质不变而被普遍采用[4]。光敏化降解的主要研究对象是水环境中的石油污染物直链烷烃。敏化剂能够从直链烷烃的碳原子上夺取氢原子后生成羟基,在氧的作用下使其降解为酮、烯、醛、醇等。这些化合物均比烷烃更加容易被水环境中的微生物所降解。
3 生物技术
微污染水源水的生物处理大多采用生物膜法,其形式大致可归纳为以下几种类型:生物接触氧化、生物塔滤、生物流化床、生物转盘和淹没式生物滤池等。
3.1 生物接触氧化法
生物接触氧化法,在池内设置人工合成的填料,经过充氧的水,以一定的速度循环流经填料,通过填料上形成的生物膜的絮凝吸附、氧化作用使水中可生化利用的污染物基质得到降解去除。生物接触氧化法的主要优点是处理能力大,对冲击负荷有较强的适应性,污泥生成量少;缺点是填料间水流缓慢,水力冲刷小,另外填料价格较贵,加上填料的支承结构,投资费用较高。
3.2 塔式生物滤池
轻质滤料的开发与采用,为塔式生物滤池的应用创造了条件。生物塔滤增加了滤池高度,分层放置填料,通风良好,克服了普通生物滤池(非曝气)溶解氧不足的缺陷。国外广泛采用塑料材质大孔径波纹孔板滤料,我国常采用环氧树脂固化玻璃钢蜂窝填料。塔式生物滤池的净化作用也是通过填料表面生物膜的新陈代谢活动来实现的。塔式滤池的优点是负荷高,产水量大,占地面积小,对冲击负荷水量和水质的突变适应性较强。缺点是动力消耗较大,基建投资高,运行管理不便。
3.3 生物膨胀床与流化床
生物膨胀床是介于固定床和流化床之间的一种过渡状态,流化床中的填料随水、气流的上升流速的增加而逐渐由固定床经膨胀床最后成为流化床。生物膨胀床与流化床通过选用适度规格粒径(约为0.2 mm~1.0 mm)的生物载体,如砂、焦炭、活性炭、陶粒等。采用生物膨胀床与流化床,可解决固定填料床中常出现的堵塞问题,进一步提高净化效率,且占地面积少。但由于保持膨胀或流化状态,消耗的动力费用较高,且维护管理复杂,在运行过程中还存在流化介质跑料现象,其工程应用还很少见。
3.4 生物转盘反应器
生物转盘在污水处理中已广泛采用,目前在给水处理领域,对某些污染程度较为严重的微污染水进行了一些研究。生物转盘的优点是有较好的耐冲击负荷能力,脱落膜易于清理处置。但存在的不足是生物氧化接触时间较长,构筑物占地面积大,盘片价格较贵,基建投资高。
3.5 新型生物反应器处理技术
膜生物反应器是膜处理和生物处理相结合的一种新工艺,它是指以超滤膜组件作为取代二沉池的泥水分离单元设备,并与生物反应器组合构成的一种新型生物处理装置[5]。由于超滤膜能很好地截流来自生物反应器混合液中的微生物絮体、分子量较大的有机物及固体悬浮物质,并使之重新返回到生化反应器中,这就使反应器内的活性污泥浓度得以大大提高,从而能有效的提高有机物的去除率。另外,膜滤出水水质很好,系统所排放剩余污泥也很少[6]。
4 结语
总的来说,物理、化学法处理效率较高。尤其是各种联用技术的开发,对一些难降解有机物的去除非常有效,通过高效氧化,去除水中的大部分有机物,并有效的降低了饮用水致突变活性。但这些方法设备都相对复杂,运行和操作条件要求较高,尤其是成本问题严重制约了它们的推广使用。相比之下,生物技术是一种经济有效且在物理学上安全的方法,尤其在与传统工艺(混凝—沉淀—过滤—消毒)联用后,对降低饮用水致突变活性效果也很好。
今后的水处理技术将越来越强调将物理、化学、生物等方法有机结合起来,充分发挥各自的技术特点和优势进行综合治理,以达到最低成本下的最佳去除效果。
摘要:结合微污染水源水处理技术的研究现状,提出了适合受微污染水水质净化的基本技术对策,指出今后的水处理技术将物理、化学、生物等方法有机结合起来,充分发挥各自的技术特点及优势进行综合治理,从而达到最低成本下的最佳去除效果。
关键词:微污染水,水处理技术,物理技术,化学技术,生物预处理
参考文献
[1]莫罹,黄霞.微滤膜处理微污染源水研究[J].中国给水排水,2002,18(4):40-43.
[2]刘伟,马军.高铁酸钾预氧化处理受污染水库水[J].中国给水排水,2001,17(7):70-73.
[3]罗建中,孙国胜.微污染水处理技术进展[J].过滤与分离,2002,12(3):4-9.
[4]Dunlop P S M,Byrne J A.The photocatalytic removal of bacte-rial pollutants from drinking water[J].Journal of photochem-istry and photobiology A:Chemistry,2002(148):355-363.
[5]莫罹,黄霞.膜—生物反应器处理微污染水源水的运行特性[J].中国环境科学,2003,23(2):196-200.
[6]Nuhoglu A.Drinking water denitrification by a membrane bio-reactor[J].Water Research,2002(36):11-22.
微污染水处理的试验与生产 第3篇
【关键词】微污染水;高锰酸钾;处理;试验;生产
饮用水遭到有机物的污染,导致某些指标超出饮用水源所规定的卫生标准的水就是微污染水[1]。在一般情况下,水的处理工艺中包含混凝沉淀与加氯消毒,其中有些微量有机污染物在加氯消毒中极易产生大量的消毒副产物,这必然会对人体健康造成一定的威胁。本文主要是针对在前期直接过滤试验的研究层面上,通过选取臭氧作为氧化剂,利用其强氧化性来处理污染水源方面的相关问题进行研究。
1.试验方法
1.1试验水质
试验所选取的水质是来自天津某净水厂事先预沉的原水。试验期间的水质:浊度控制在3.53~7.55NTU;CODMn为2.67~5.89mg/L;UV254为0.035~0.058cm-1;温度则维持在0~10℃;pH为7.3~8.1;NH4+-N质量浓度保持在0.08~0.13mg/L范围内。
1.2试验装置
所使用的试验设备:(1)预氧化池:选用的材料是有机玻璃材质,高度在600mm,内径为250mm,水力的预留时间控制在半小时以内;(2)臭氧接触氧化器:材料为玻璃材质,柱体总长度1200mm,内径约为70mm,通过玻璃纱板进行曝气,原水从砂板的上部位流入,臭氧则从砂板的底部进入,沿着玻璃砂板形成细小的气泡后与原水接触。柱体的预留时间大致在半小时,在柱体的一侧要设置五个出水阀门,在另一相对应的面安装进水口、强制循环出水口与循环水泵;(3)絮凝池:材料为有机玻璃材质,它由每格为 200mm×200mm的四小格组成,四格之间使用有机玻璃将其隔离,使用调节隔板可控制容积量与絮凝时间;(4)滤柱:选用的主要是有机玻璃材质,设有两组滤柱,一组滤柱高2400mm,内径100mm,滤柱两侧等距离设置20组水嘴;一组滤柱高2000mm,内径50mm,两侧对称设置9组水嘴。两组滤柱的滤料都选用的是无烟煤/石英砂,下层石英砂粒径控制在0.8~1.0mm,厚度 400 mm,上层无烟煤粒径则为1.0~2.0mm,厚度 500mm;(5)臭氧发生器:氧气的来源主要是依靠内置高浓度制氧机来提供;(6)管式混合器:长为500mm,内径50mm。
1.3试验方法
使用的主要方法是玻璃电极法,PH的测定是根据Orion868-2 型 pH 计进行计算,采用美国HACH2100AN浊度仪进行测定水质的浊度,CODMn的测定方法是酸性高锰酸钾法;UV254的测定是根据TU-1800 型紫外可见分光光度计与紫外分光光度法。
1.4分析指标及方法
在试验前期对水质先进行微絮凝直接过滤,所选择的混凝剂是 FeCl3,所加量的最适浓度为5mg/L,滤速为10m/h,微絮凝时间保持在5min。在本次实验中增添了预氧化工艺,所选取的预氧化剂是高锰酸钾与臭氧。试验原水经过预氧化-微絮凝直接过滤后,继而测定出水的浊度、UV254、CODMn。预氧化十分钟后选则0.5、1、1.5、2mg/L四个浓度的臭氧投加量,测定臭氧浓度的方法选用的是碘量法进行测定,当投加量确定后,选择五个预氧化时间进行不同指标处理效果的比较。
2.臭氧预氧化对处理效果影响
2.1臭氧投入量对出水水质的作用
(1)臭氧投入量对出水水质的作用。臭氧因为具有强的氧化性,因而其对浊度的去除效果比较显著,大约0.5mg/L的臭氧就可使水的浊度降为0.3NTU,如果继续增加臭氧量的话,虽然去浊程度有增加,但是增加的幅度不是很大,最终维持在95%左右。臭氧预氧化除浊的原理在于:臭氧在水中的反应增加了水中含氧官能团,像羧酸等,它能与金属盐水解所生成的产物形成聚合体,可起到降低无机颗粒表面NOM的静电作用,从而引起溶解性有机物的聚合作用而形成极具吸附能力的聚合电解质,最终形成沉淀现象;此外臭氧还可以清除包围在胶体表面的有机物。(2)臭氧投入量对出水UV254的影响。臭氧预氧化对UV254的去除效果比较明显,大约0.5mg/L的臭氧投入量就可达到接近一半的去除率,此外,UV254的去除率会随着投加量的不断增加而增加,投加量达到2mg/L时,UV254的去除率可达到59%。UV254的高去除率与臭氧在水中的作用原理有着不可分割的联系,臭氧在中性或者近中性的水中,有两种氧化形式,即直接氧化与间接氧化,它们都发挥着巨大的作用。直接氧化主要对含有不饱和键的有机物的作用比较明显,间接氧化的氧化效能远远高于直接氧化,它能够氧化和分解水中具有双键与苯环结构的有机物,并且不具有一定的选择性,所有这些特点都是UV254的主要表现特征,所以,臭氧可以高效的降低水中UV254类有机物的含量,起到净水的作用。(3)臭氧投入量对 CODMn的作用。随着臭氧投入量的增加,CODMn去除率先呈现增长的趋势,继而趋向平稳,最后保持平衡状态,臭氧投加量在1.5mg/L时,CODMn的去除率达到了57%,如果继续增加臭氧的投入量,则CODMn的增长速率呈现渐缓的状态,增长速率变慢,臭氧预氧化处理对CODMn的去除机理与UV254部分基本一致,但是 CODMn所代表的是水中的总有机物,水中的其他非 UV254表征物主要还是借助臭氧在水中的间接反应被清除的。
2.2预氧化时间对出水水质的作用
预氧化时间加长,出水浊度的去除率也会增长,但是持续延长预氧化时间,去除率的增长表现的并不是很明显,例如预氧化时间从5min延伸到20min,去除率仅仅从95%提升到98%。根据UV254和 CODMn随预氧化时间的变化情况可以看出,预氧化时间控制在5到15分钟之间,臭氧在水中去除UV254表征类物质的能力会逐渐增强,当超过15min后, UV254的去除率会基本维持在一定的幅度范围内,而对于 CODMn来说,它的去除效果达到最优化的时间是在15min以内,当预氧化时间从十分钟增至十五分钟时,去除率可上升15%作用,如果接触时间高于15min时,CODMn的去除率则会稳定在 57%左右,随着接触时间的增多,渐缓的上升,当达到了25min时,去除率增长的速率越来越慢,直至趋于稳定。这主要的原因在于,在短时间内臭氧在水中去除有机物的主要方式是直接反应,随着时间的不断增长,臭氧在水中的间接反应也渐渐稳定,十五分钟左右时基本反应完全。因此,预氧化时间控制在15min左右时是1.5mg/L臭氧投加量的最佳时间。
3.结论
当前,直接过滤使用最频繁的是低温低浊水处理方式,据相关调查研究表明:该工艺流程对低浊微污染水的处理效果也比较乐观。在初期试验中对直接过滤处理低温低浊微污染水有过相应的研究,而且已证实直接过滤对浊度的去除效果较明显,可达到九成以上,但它对水中有机污染物的去除效果却不显著,尤其是UV254和CODMn,去除率仅为15%和 17%。该项研究在初期直接过滤试验的基础上,增添了预氧化工艺,选择氧化性强的高锰酸钾和臭氧作为预氧化剂,来探讨预氧化工艺强化直接过滤处理低温低浊微污染水的有效性。
我们通过对预氧化强化直接过滤处理低温低浊微污染水的试验研究,初步明确了臭氧预氧化工艺的最优运行指数,即就是臭氧投加量在1.5mg/L时最佳,预氧化时间15min.水中浊度、UV254和CODMn的去除率维持在97%、57%和 57%比较适合,这时可断定臭氧预氧化联合直接过滤工艺对该类水质有影响力。
【参考文献】
[1]曹相生,刘杰.滤速对慢滤池深度处理生活污水的影响[J].生态环境学报,2010,11(9):1947-1950.
[2]齐雪梅,刘永昌,周田利.高锰酸钾与粉末活性炭联用强化去除水中微量污染物的研究[J].上海电力学院学报,2009,25(4):365-368,383.
MF与次氯酸钠协同处理微污染水试验研究 第4篇
【摘 要】过对跌水曝气-陶粒吸附组合工艺的实验研究,探讨了利用除铁锰微生物处理轻度污染的地下水的可行性.研究發现,单独使用常规工艺依靠空气接触氧化和陶粒吸附对锰的去除效果有限,在滤速为2.5m/h和1m/h条件下,去除率分别约为14%,8%;利用生物固锰作用,进行微生物固定化,在运行稳定后,跌水曝气-陶粒吸附组合工艺可以在较高滤速下完成对锰的有效去除,使得出水总锰浓度达到国家饮用水水质标准(GB5749-2006)。
【关键词】常规工艺;微生物;地下水
0.引言
随着经济发展和科技进步,环境问题表现的日益突出,尤其是地下水污染问题,近年来,不同地区地下水体中都出现了不同程度的锰超标和氨氮超标,在北方地区,锰超标成为处理微污染地下水的一项重大课题,生物固锰技术已经广泛应用到常规处理工艺中,本文以跌水曝气-陶粒工艺[1]为代表,阐述生物固锰在常规工艺处理地下水源水中产生的不可替代的作用。
1.试验装置和方法
1.1试验装置
跌水曝气-陶粒工艺:如图1.1所示,原水从一号井中抽出,通过加压经两管分别进入跌水水箱和反冲洗水箱,经跌水曝气水箱进行一级曝气,通过布水管进入生物滤池再进行二次跌水曝气后,流入生物接触过滤罐,滤后水从底部流出。水箱跌水高度1.5m,接触过滤罐为不锈钢材质,高3.2m,内径800mm,滤层高度1.5m,滤料采用改性火山岩陶粒,粒径3.2~5.0mm。承托层采用鹅卵石,粒径10~20mm,高度为0.2m。
1.2材料
1.2.1微生物材料
菌种取自稳定运行的除铁锰氨氮陶粒曝气生物滤池,经分离提纯鉴定为柠檬酸杆菌(Citrobacter sp.)、弗氏柠檬酸杆菌(Citrobacter freundii)、施氏假单胞菌(Pseudomonas stutzeri),是3株异养-好氧具有一定除铁锰能力的微生物。
1.2.2地下水源水水质
原水水质特点为低铁高锰水质,重点处理对象为锰,冬季总锰含量范围为6.46~8.38mg/l,夏季总锰含量范围为4.76~8.42mg/l。
1.3方法
1.3.1试验初期接触氧化-物理吸附试验
试验启动前对滤罐进行了长时间、高强度的反冲洗,冲刷掉原有少量滤膜,排除生物作用干扰,试验初期在冬季进行,运行时间80天,前40天滤速为2.5m/h,后40天滤速为1m/h,试验过程选取反冲洗周期7d,反冲洗强度8L/(m2·s),定期检测总锰浓度并计算去除率,如图2.1。
1.3.2运行稳定期接触氧化-生物固锰试验
运行稳定期总100天,运行稳定期在夏季进行,分两个阶段:前45天进行菌种固定化试验,平均五天1次,每次50L,共9次,期间EBCT=180min,后55天调整滤速2m/h,反冲洗周期7d,反冲洗强度8L/(m2·s),定期检测总锰浓度并计算去除率,如图2.2。
2.结果与分析
2.1图 不同滤速下总锰去除效果
由图2.1可见,滤速变化对总锰去除率变化影响显著。随着滤速的不断下降,仅依靠跌水曝气过程的自然氧化并不能完成对总锰的有效去除,滤罐对锰的去除率虽然有起伏,但能明显看出上升趋势。随着滤速的降低,出水总锰浓度不断降低,在滤速为2.5m/h时,从第9天到第40天,出水总锰浓度处于0.5~1mg/l,总锰去除率保持在86~90%,在第40天起,调整滤速为1m/h时,出水总锰浓度有所下降,在45天后能够保持处于0.3~0.5mg/l,总锰去除率保持在90~96%,表明仅依赖空气的自然接触氧化,当滤速降低到一定程度,并不能对总锰完成有效去除。
2.2图 稳定期总锰随时间变化曲线
由图2.2可见,在试验固定化时期,滤罐对锰的去除率虽然有起伏,但能明显看出其上升趋势。此去除率快速上升阶段一直持续到第25天左右,出水水质稳定,总锰浓度达到了0.1mg/L以下,去除率达到99.05%。这是固定化后期,滤料表面形成成熟的生物膜,菌种之间已经相互适应,活性较高,能很快度过适应期,进入快速增长期,从而迅速提高总锰去除率。随后滤罐进入了一个较稳定的时期,从第45天起,调整滤速2m/h,随后一段时间内,总锰去除效果有所波动,但出水锰浓度仍能控制在0.1mg/L以下。表明,生物滤膜成熟以后,依靠生物固锰作用,能够完成对锰的有效去除,并且相比运行前期相同滤速下的总锰去除率,生物固锰极大的提高了跌水曝气-陶粒吸附工艺的净水效率和经济效益。
3.结语
(1)常规跌水曝气-陶粒吸附工艺通过空气的自然接触氧化和物理吸附,当滤速降低到一定程度,不能完成总锰完成有效去除,只能控制出水总锰浓度在0.5mg/l上下波动。
(2)生物滤膜成熟以后,依靠生物固锰作用,能够完成对锰的有效去除,并且在滤速提高至2m/h时使得出水水质稳定达标。 [科]
【参考文献】