平行线的性质1范文第1篇
郭店镇第一初级中学导学案
[键入文字]
[键入文字]
[键入文字]
平行线的性质1范文第2篇
姓名_______________ 得分____ 知识点一 同位角相等 两直线平行
1.如图1所示,若∠1=60°,∠2=60°,则AB_______CD.
图1 图2 图3 2.如图2所示,若∠1=∠2,则a∥_____. 知识点二 内错角相等 两直线平行 3.如图2所示,若∠2=∠3,则b______c. 4.如图2所示,b∥c,若∠1=______,则a∥c. 知识点三 同旁内角互补 两直线平行
5.如图3所示,若∠BEF+______=180°,则AB∥CD.
6.(2008,齐齐哈尔市)如图4所示,请你写一个适当的条件_______, •使AD∥BC.
图4 图5 图6 ◆课后测控
1.如图5所示,若∠1=30°,∠2=80°,∠3=30°,∠4=70°,若AB∥____. 2.如图6所示,若∠1=110°,∠2=70°,则a_______b. 3.如图7所示AE∥BD,下列说法不正确的是( )
A.∠1=∠2 B.∠A=∠CBD C.∠BDE+∠DEA=180° D.∠3=∠4
图7 图8 图9 4.如图8所示,能说明AB∥DE的有( )
①∠1=∠D; ②∠CFB+∠D=180°; ③∠B=∠D; ④∠BFD=∠D. A.1个 B.2个 C.3个 D.4个
5.(易错题)如图9所示,能说明AD∥BC,下列条件成立的是( ) A.∠2=∠3 B.∠1=∠4 C.∠1+∠2=∠3+∠4 D.∠A+∠C=180°
6.(过程探究题)如图所示,若∠1+∠2=180°,∠1=∠3,EF与GH平行吗? [解答]因为∠1+∠2=180°( )
所以AB∥_______( )
又因为∠1=∠3( )
所以∠2+∠________=180°( )
所以EF∥GH(同旁内角互补,两直线平行) 7.(经典题)如图所示,完成下列填空.
(1)∵∠1=∠5(已知)
∴a∥______(同位角相等,两直线平行)
(2)∵∠3=_______(已知)
∴a∥b(内错角相等,两直线平行)
(3)∵∠5+_______=180°(已知)
∴______∥_______(同旁内角互补,两直线平行)
8.(原创题)如图所示,写出所有角满足的条件使AB∥EF,并说明理由.
◆拓展创新 9.(应用题)(1)如图(1)所示,AB,CD,EF是三条公路,且AB⊥EF,CD⊥EF.
判断AB与CD的位置关系,并说明理由; (2)如图(2)所示在(1)的条件下,若小路OM平分∠EOB.通往加油站N•的岔道O′N平分∠CO′F,试判断OM与O′N位置关系.
答案: 回顾归纳
1.同位角相等 2.内错角相等 3.同旁内角 课堂测控
1.∥ 2.b 3.∥ 4.∠2或∠3 5.∠EFD
6.∠ABC+∠BAD=180°或∠ADB=∠DBC或∠FAD=∠ABC.(任选一个即可).
解题规律:依照三个判定定理,同位角,内错角,同旁内角关系判定两直线平行. 课后测控
1.CD 2.∥ 3.D 4.C(点拨:①②④正确)
5.A(点拨:∠1=∠4得AB∥CD,∠1+∠2≠∠3+∠4,∠A+∠C≠180°) 6.已知,CD,同旁内角互补两直线平行,已知,∠3,等量代换
解题规律:EF∥GH成立∠2+∠3=180°,又∠1=∠3,∴∠1+∠2=180°(已知) 7.(1)b (2)∠5 (3)∠4,a,b 思路点拨:由条件与结论关系及括号中定理判断填空内容. 8.①同位角∠A=∠CEF,∠B=∠EFC,
②内错角∠ADE=∠DEF,
③同旁内角.∠A+∠AEF=180°,∠B+∠BFE=180°,∠BDE+∠DEF=180°
思路点拨:AB,EF被AC所截,AB,EF被BC所截,AB,EF被DE所截,•三个方面的关系中存在同位角,内错角,同旁内角来判定AB∥EF的条件. 9.(1)∵AB⊥EF,CD⊥EF
∴AB∥CD(两条直线都垂直于同一条直线,这两条直线平行)
(2)延长NO′至P,可证∠EOM=∠EO′P=45°,得OM∥O′N.
平行线的性质1范文第3篇
重点难点:
知识点一:命题的概念
1.定义:判断一件事情的语句,叫做命题。
2.注意:(1)必须是对某件事情做出判断的句子,才能叫命题,反之未做判断的句子,不能叫命题,这是辨别一个语句是否是命题的根本原则。
(2)命题的形式可以使语言叙述的形式,也可以用数学符号表示。
(3)命题的内容并非全为数学语言,还有生活中其它方面更广泛的内涵。
知识点二:命题的结构
许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题都可以写成“如果。。。那么。。。”的形式。
知识点三:命题的真假
1.命题的真假是以对事情所作判断的正确与否来划分的。
2.如果是正确命题,可已经推理证明其正确性,若判断为假命题,则须举反例说明其错误。
知识点四:定理
1.定义:有些命题的正确性是用推理证实的,这样的真命题叫做定理。
2.注意:定理属于命题,而且属于真命题,但命题不一定是定理。定理的正确性必须是经过推理证明的,它
又是以后推理论证的理论依据。
典型例题分析:
题型一:对命题概念的考察
例1:下列命题中,是假命题的是()
A、同旁内角互补B、对顶角相等 C、直角的补角仍然是直角 D、两点之间,线段最短
题型二:对命题题设结论的区分
例2:1.“一个钝角与一个锐角的差是锐角”的题设是,结论是。这是一个____(真,假)命题
2.把命题“直角都相等”改写成“如果那么”形式:
3.把命题“邻补角的平分线互相垂直”改写成“如果,那么。”的形式:
4.把命题“平行于同一条直线的两条直线互相平行”改写成“如果,那么”形式:
同步练习:
1.设a、b、c为同一平面内的三条直线,下列命题不正确的是()
A.设a⊥c,b⊥c,则a⊥bB.若a∥c,b∥c,则a∥bC.若a∥b,b⊥c,则a⊥cD.若a⊥b,b⊥c,则a∥c
2.下列命题中正确的是()
A.有且只有一条直线垂直于已知直线。 B.直线c外一点A与直线c上各点连接而成的所有线段中,
C.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。 D.互相垂直的两条直线一定相交。
3.判断下列命题是真命题还是假命题。
(1)邻补角是互补的角(2)互补的角是邻补角(3)两个锐角的和是锐角
(4)不等式的两边同乘以一个负数,不等号的方向不变。
4.如果两个角的一边在一条直线上,另一边互相平行,那么这两个角()
A、相等B、互补C、相等或互补D、不能确定
5.把下列命题改成“如果,那么”的形式:
(1)、内错角相等,两直线平行。
(2)、两直线平行,同旁内角互补。
(3)、同角的余角相等。
(4)、等角的补角相等。
平行线的性质1范文第4篇
一、目标分析
1、知识与技能:探索平行线的性质,会用平行线的性质定理进行简单的计算、证明;了解平行线的性质和判定的区别。
2、过程与方法:通过学生动手操作、观察,培养他们主动探索与合作能力,使学生领会数形结合、转化的数学思想和方法,从而提高学生分析问题和解决问题的能力。
3、情感、态度与价值观:情境的创设,使学生认识到数学来源于生活又为生活服务,从而认识到数学的重要性。通过对平行线的性质的推导过程,培养学生严密的思维能力。
二、教学重点、难点
重点:平行线的三个性质及运用。
难点:平行线的性质定理的推导及平行线的性质定理与判定定理的区别。
三、教学过程
1、创设情境引入
(1)、我们的生活离不开电,生活中的电是通过两条互相平行的导线送到千家万户的。输电线路在某处转了一个弯,已知转弯后的两条导线中的一条和原来的两条导线中的一条之间的夹角是130°,那么这条导线和原来的另一条导线之间的夹角是多少度呢?学习了这节课后我们就很容易知道答案了。
【设计意图】通过生活中的实例引入,既能提高学生的学习兴趣,激发学生探索知识的热情,也能使学生认识到数学来源于生活。
(2)设问:根据同位角相等可以判定两条直线平行,反过来,如果两条直线平行,同位角之间有什么关系呢?内错角、同旁内角之间又有什么关系呢?
【设计意图】:通过复习回忆平行线的判定来引入新课的目的,一是温故而知新,促使学生实现知识思维的正迁移;二是有利于学生在学习过程中去比较性质与判定的不同.
2、探索新知 (1)画两条平行线被第三条直线所截,找出哪些角是同位角,哪些是内错角、同旁内角,并用量角器量一下同位角,确定它们的大小关系。猜想同位角之间的关系。
【设计意图】:画平行线的这个过程主要让学生明白确定平行线性质的前提是要两条平行线,帮助学生区分平行线的性质与判定。 (2)讲解平行线的性质一。
【设计意图】:加深学生的印象,更加牢固的掌握这一知识点,为推导出下面两个性质打好基础。
(3)引导学生大胆猜想两平行线被第三条直线所截得到的内错角、同旁内角之间的关系。讲解推导过程。
【设计意图】:这样设计不仅使学生认识到平行线的三个性质之间的联系,还培养了学生大胆猜测并通过推理验证所猜测的结论的能力,为培养学生自主学习和良好的学习习惯都有帮助。 (4)总结平行线的性质
性质1:两直线平行,同位角相等. 性质2:两直线平行,内错角相等. 性质3:两直线平行,同旁内角互补. (5)平行线的性质和平行线的判定区别: 要强调“平行线的判定是知道了角的关系来得出平行,而平行线的性质是知道两直线平行得角的关系”
3、知识运用
(1)解决引入时提出的问题
(2)利用所学的知识讲解例4和例5 (3)把一条直线平行移动到另一个位置,这两条直线一定平行。讲解例6。 (4)练习P174175 第
1、
2、
3、4题
【设计意图】:通过例题的讲解,使学生认识到平行线的性质的用处,通过练习,使学生对此处知识点更加熟悉。
4、回顾总结
(1)、通过这节课的学习,你有什么收获?你感受最深的是什么?
(2)、这节课得到的平行线的性质与平行线判定的方法有什么区别和联系?你能区分清楚吗?
【设计意图】:通过提出两个问题,让学生自己进行小结,回顾本节课所学的知识,并将本节课学的知识与前一节所学的知识进行比较、整理。有利于学生加以区分和为以后的应用打下基础。
5、作业设计 P175 第5题
【设计意图】:本题是让学生补充完整解答过程,学生在做作业过程中不但可以更深刻的理解平行线的性质,同时也让学生了接逻辑推理的步骤,培养学生推理的能力。
四、说板书设计 平行线的性质
1.平行线的性质:
性质1: 例题: 练习: 性质2: 性质3:
2.平行线的性质与 判定的区别
【设计意图】:这样设计板书,既简洁明了,又突破了重难点,使学生很容易知道本节课的主要内容,也便于学生进行归纳总结。
五、自我评价
平行线的性质1范文第5篇
一、目标分析
1、知识与技能:探索平行线的性质,会用平行线的性质定理进行简单的计算、证明;了解平行线的性质和判定的区别。
2、过程与方法:通过学生动手操作、观察,培养他们主动探索与合作能力,使学生领会数形结合、转化的数学思想和方法,从而提高学生分析问题和解决问题的能力。
3、情感、态度与价值观:情境的创设,使学生认识到数学来源于生活又为生活服务,从而认识到数学的重要性。通过对平行线的性质的推导过程,培养学生严密的思维能力。
二、教学重点、难点
重点:平行线的三个性质及运用。
难点:平行线的性质定理的推导及平行线的性质定理与判定定理的区别。
三、教学过程
1、创设情境引入
(1)、我们的生活离不开电,生活中的电是通过两条互相平行的导线送到千家万户的。输电线路在某处转了一个弯,已知转弯后的两条导线中的一条和原来的两条导线中的一条之间的夹角是130°,那么这条导线和原来的另一条导线之间的夹角是多少度呢?学习了这节课后我们就很容易知道答案了。
【设计意图】通过生活中的实例引入,既能提高学生的学习兴趣,激发学生探索知识的热情,也能使学生认识到数学来源于生活。
(2)设问:根据同位角相等可以判定两条直线平行,反过来,如果两条直线平行,同位角之间有什么关系呢?内错角、同旁内角之间又有什么关系呢?
【设计意图】:通过复习回忆平行线的判定来引入新课的目的,一是温故而知新,促使学生实现知识思维的正迁移;二是有利于学生在学习过程中去比较性质与判定的不同.
2、探索新知 (1)画两条平行线被第三条直线所截,找出哪些角是同位角,哪些是内错角、同旁内角,并用量角器量一下同位角,确定它们的大小关系。猜想同位角之间的关系。
【设计意图】:画平行线的这个过程主要让学生明白确定平行线性质的前提是要两条平行线,帮助学生区分平行线的性质与判定。 (2)讲解平行线的性质一。
【设计意图】:加深学生的印象,更加牢固的掌握这一知识点,为推导出下面两个性质打好基础。
(3)引导学生大胆猜想两平行线被第三条直线所截得到的内错角、同旁内角之间的关系。讲解推导过程。
【设计意图】:这样设计不仅使学生认识到平行线的三个性质之间的联系,还培养了学生大胆猜测并通过推理验证所猜测的结论的能力,为培养学生自主学习和良好的学习习惯都有帮助。 (4)总结平行线的性质
性质1:两直线平行,同位角相等. 性质2:两直线平行,内错角相等. 性质3:两直线平行,同旁内角互补. (5)平行线的性质和平行线的判定区别: 要强调“平行线的判定是知道了角的关系来得出平行,而平行线的性质是知道两直线平行得角的关系”
3、知识运用
(1)解决引入时提出的问题
(2)利用所学的知识讲解例4和例5 (3)把一条直线平行移动到另一个位置,这两条直线一定平行。讲解例6。 (4)练习P174175 第
1、
2、
3、4题
【设计意图】:通过例题的讲解,使学生认识到平行线的性质的用处,通过练习,使学生对此处知识点更加熟悉。
4、回顾总结
(1)、通过这节课的学习,你有什么收获?你感受最深的是什么?
(2)、这节课得到的平行线的性质与平行线判定的方法有什么区别和联系?你能区分清楚吗?
【设计意图】:通过提出两个问题,让学生自己进行小结,回顾本节课所学的知识,并将本节课学的知识与前一节所学的知识进行比较、整理。有利于学生加以区分和为以后的应用打下基础。
5、作业设计 P175 第5题
【设计意图】:本题是让学生补充完整解答过程,学生在做作业过程中不但可以更深刻的理解平行线的性质,同时也让学生了接逻辑推理的步骤,培养学生推理的能力。
四、说板书设计 平行线的性质
1.平行线的性质:
性质1: 例题: 练习: 性质2: 性质3:
2.平行线的性质与 判定的区别
【设计意图】:这样设计板书,既简洁明了,又突破了重难点,使学生很容易知道本节课的主要内容,也便于学生进行归纳总结。
五、自我评价
平行线的性质1范文第6篇
1、如右图,直线a、b被直线l所截,a∥b,170,
则2.l
a b
2、两条直线被第三条直线所截,总有()
A、同位角相等B、内错角相等C、同旁内角互补D、以上都不对
3、如图1,下列说法正确的是()A、若AB∥CD,则∠1=∠2B、若AD∥BC,则∠3=∠4 C、若∠1=∠2,则AB∥CDD、若∠1=∠2,则AD∥BC
(1)(2)(3)(4)
4、如图2,能使AB∥CD的条件是()A、∠1=∠BB、∠3=∠AC、∠1+∠2+∠B=180°D、∠1=∠A
5、如图3,AD∥BC,BD平分∠ABC,若∠A=100°,则∠DBC的度数等于()A、100°B、85°C、40°D、50°
6、如图4所示,AC⊥BC,DE⊥BC,CD⊥AB,∠ACD=40°,则∠BDE等于()A、40°B、50°C、60°D、不能确定
7、如图5所示,直线L1∥L2,L3⊥L4,有三个命题:①∠1+∠3=90°,②∠2+∠3=90°,③∠2=∠4.下列说法中,正确的是()
A、只有①正确B、只有②正确C、①和③正确D、①②③都正确
(5)
B D
F
(6)
C
8、如图6,把矩形ABCD沿EF对折后使两部分重合,若150°,则AEF= ()A、110°B、115°C、120°D、130°
二、解答题
1、 如图,AD∥BC,AC,说明AB∥DC.A
2、如图,已知DE∥BC,12,CDAB于点D,说明:FGAB
3、如图所示,已知AB∥CD,A110,C140,求P的度数.4、已知如图,AB//CD,试解决下列问题: (1)∠1+∠2=______;(2)∠1+∠2+∠3=_____;
(3)∠1+∠2+∠3+∠4=_____;
(4)试探究∠1+∠2+∠3+∠4++∠n=_____。
BB11E
21E2
F32
F
C
B
E
12N
C
B
DDC CD
5、根据题意结合图形填空:
已知:如图,DE∥BC,∠ADE=∠EFC,将说明∠1=∠2成立的理由填写完整.D
解:∵ DE∥BC()
∴∠ADE=______() ∵∠ADE=∠EFC() ∴______=______
∴DB∥EF() B∴∠1=∠2()
D
E
F
C
6、如图,AB、CD被EF所截,MG平分∠BMN,NH平分∠DNM,已知∠GMN+ ∠HNM=90°,试问:AB∥CD吗?请说明理由。
7、已知:如图,AD⊥BC于D,EG⊥BC与G,∠E=∠3,试问:AD是∠BAC的平分线 吗?若是,请说明理由。
8、如图所示,潜望镜的两个镜子是平行放置的,光线经过镜子反
射后,有∠1=∠3,∠4=∠6,请你解释为什么进入潜望镜的光线和离开潜望镜的光线是平行的?
9.如图⑩
∵∠B=∠_______,∴ AB∥CD()∵∠BGC=∠_______,∴ CD∥EF() ∵AB∥CD ,CD∥EF,
∴ AB∥_______() 10.如图⑾ 填空:
(1)∵∠2=∠B(已知)
∴ AB__________() (2)∵∠1=∠A(已知)
∴__________() (3)∵∠1=∠D(已知)
∴__________() (4)∵_______=∠F(已知)
∴AC∥DF()
11、.已知,如图∠1+∠2=180°,填空。
∵∠1+∠2=180°()又∠2=∠3()
∴∠1+∠3=180°
∴_________()
12.已知:如图⑿,CE平分∠ACD,∠1=∠B,
求证:AB∥CE
13.如图:∠1=53,∠2=127,∠3=53,
试说明直线AB与CD,BC与DE的位置关系。
14.如图12,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1 +∠2 = 90°.
求证:(1)AB∥CD;(2)∠2 +∠3 = 90°.
A
C F
图12
B 1