角的平分线的性质范文第1篇
教学目标
1.角的平分线的性质.
2.会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”.
3.能应用这两个性质解决一些简单的实际问题.
教学重点
角平分线的性质及其应用.
教学难点
灵活应用两个性质解决问题.
教学过程
Ⅰ.创设情境,引入新课
拿出课前准备好的折纸与剪刀,剪一个角,把剪好的角对折,使角的两边叠合在一起,再把纸片展开,看到了什么?把对折的纸片再任意折一次,然后把纸片展开,又看到了什么?
分析:第一次对折后的折痕是这个角的平分线;再折一次,又会出现两条折痕,而且这两条折痕是等长的.这种方法可以做无数次,所以这种等长的折痕可以折出无数对.
Ⅱ.导入新课
如图,将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?
PD、PE是否等长?
问题1:如何用文字语言叙述所画图形的性质吗?
[生]角平分线上的点到角的两边的距离相等.
问题2:能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话.
请填下表:
已知事项:OC平分∠AOB,PD⊥OA,PE⊥OB,D、E为垂足.
由已知事项推出的事项:PD=PE.
于是我们得角的平分线的性质:在角的平分线上的点到角的两边的距离相等.
[师]那么到角的两边距离相等的点是否在角的平分线上呢?
问题3:根据下表中的图形和已知事项,猜想由已知事项可推出的事项,并用符号语言填写下表:
[生讨论]已知事项符合直角三角形全等的条件,所以Rt△PEO≌△PDO(HL).于是可得∠PDE=∠POD.
由已知推出的事项:点P在∠AOB的平分线上.
由此我们又可以得到一个性质:角的内部到角的两边距离相等的点在角的平分线上.这两个性质有什么联系吗?
分析:这两个性质已知条件和所推出的结论可以互换.
思考:
如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,•离公路与铁路交叉处 500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20000)?
1.集贸市场建于何处,和本节学的角平分线性质有关吗?用哪一个性质可以解决这个问题?
2.比例尺为1:20000是什么意思?
结论:
1.应该是用第二个性质.这个集贸市场应该建在公路与铁路形成的角的平分线上,并且要求离角的顶点 500米处.
2.在纸上画图时,我们经常在厘米为单位,而题中距离又是以米为单位,这就涉及一个单位换算问题了. 1m= 100cm,所以比例尺为1:20000,其实就是图中 1cm•表示实际距离 200m的意思.
作图如下:
第一步:尺规作图法作出∠AOB的平分线OP.
第二步:在射线OP上截取OC= 2.5cm,确定C点,C点就是集贸市场所建地了.
总结:应用角平分线的性质,就可以省去证明三角形全等的步骤,使问题简单化.所以若遇到有关角平分线,又要证线段相等的问题,•我们可以直接利用性质解决问题.
III.例题
例 如图,△ABC的角平分线BM、CN相交于点P.求证:点P到三边AB、BC、CA的距离相等.
分析:点P到AB、BC、CA的垂线段PD、PE、PF的长就是P点到三边的距离,也就是说要证:PD=PE=PF.而BM、CN分别是∠B、∠C的平分线,•根据角平分线性质和等式的传递性可以解决这个问题.
证明:过点P作PD⊥AB,PE⊥BC,PF⊥AC,垂足为D、E、F.
因为BM是△ABC的角平分线,点P在BM上.
所以PD=PE.
同理PE=PF.
所以PD=PE=PF.
即点P到三边AB、BC、CA的距离相等.
IV.课时小结
角的平分线的性质范文第2篇
教学目标
1.角的平分线的性质.
2.会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”.
3.能应用这两个性质解决一些简单的实际问题.
教学重点
角平分线的性质及其应用.
教学难点
灵活应用两个性质解决问题.
教学过程
Ⅰ.创设情境,引入新课
拿出课前准备好的折纸与剪刀,剪一个角,把剪好的角对折,使角的两边叠合在一起,再把纸片展开,看到了什么?把对折的纸片再任意折一次,然后把纸片展开,又看到了什么?
分析:第一次对折后的折痕是这个角的平分线;再折一次,又会出现两条折痕,而且这两条折痕是等长的.这种方法可以做无数次,所以这种等长的折痕可以折出无数对.
Ⅱ.导入新课
如图,将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?
PD、PE是否等长?
问题1:如何用文字语言叙述所画图形的性质吗?
[生]角平分线上的点到角的两边的距离相等.
问题2:能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话.
请填下表:
已知事项:OC平分∠AOB,PD⊥OA,PE⊥OB,D、E为垂足.
由已知事项推出的事项:PD=PE.
于是我们得角的平分线的性质:在角的平分线上的点到角的两边的距离相等.
[师]那么到角的两边距离相等的点是否在角的平分线上呢?
问题3:根据下表中的图形和已知事项,猜想由已知事项可推出的事项,并用符号语言填写下表:
[生讨论]已知事项符合直角三角形全等的条件,所以Rt△PEO≌△PDO(HL).于是可得∠PDE=∠POD.
由已知推出的事项:点P在∠AOB的平分线上.
由此我们又可以得到一个性质:角的内部到角的两边距离相等的点在角的平分线上.这两个性质有什么联系吗?
分析:这两个性质已知条件和所推出的结论可以互换.
思考:
如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,•离公路与铁路交叉处 500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20000)?
1.集贸市场建于何处,和本节学的角平分线性质有关吗?用哪一个性质可以解决这个问题?
2.比例尺为1:20000是什么意思?
结论:
1.应该是用第二个性质.这个集贸市场应该建在公路与铁路形成的角的平分线上,并且要求离角的顶点 500米处.
2.在纸上画图时,我们经常在厘米为单位,而题中距离又是以米为单位,这就涉及一个单位换算问题了. 1m= 100cm,所以比例尺为1:20000,其实就是图中 1cm•表示实际距离 200m的意思.
作图如下:
第一步:尺规作图法作出∠AOB的平分线OP.
第二步:在射线OP上截取OC= 2.5cm,确定C点,C点就是集贸市场所建地了.
总结:应用角平分线的性质,就可以省去证明三角形全等的步骤,使问题简单化.所以若遇到有关角平分线,又要证线段相等的问题,•我们可以直接利用性质解决问题.
III.例题
例 如图,△ABC的角平分线BM、CN相交于点P.求证:点P到三边AB、BC、CA的距离相等.
分析:点P到AB、BC、CA的垂线段PD、PE、PF的长就是P点到三边的距离,也就是说要证:PD=PE=PF.而BM、CN分别是∠B、∠C的平分线,•根据角平分线性质和等式的传递性可以解决这个问题.
证明:过点P作PD⊥AB,PE⊥BC,PF⊥AC,垂足为D、E、F.
因为BM是△ABC的角平分线,点P在BM上.
所以PD=PE.
同理PE=PF.
所以PD=PE=PF.
即点P到三边AB、BC、CA的距离相等.
IV.课时小结
角的平分线的性质范文第3篇
教学目标
1.角的平分线的性质.
2.会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”.
3.能应用这两个性质解决一些简单的实际问题.
教学重点
角平分线的性质及其应用.
教学难点
灵活应用两个性质解决问题.
教学过程
Ⅰ.创设情境,引入新课
拿出课前准备好的折纸与剪刀,剪一个角,把剪好的角对折,使角的两边叠合在一起,再把纸片展开,看到了什么?把对折的纸片再任意折一次,然后把纸片展开,又看到了什么?
分析:第一次对折后的折痕是这个角的平分线;再折一次,又会出现两条折痕,而且这两条折痕是等长的.这种方法可以做无数次,所以这种等长的折痕可以折出无数对.
Ⅱ.导入新课
如图,将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?
PD、PE是否等长?
问题1:如何用文字语言叙述所画图形的性质吗?
[生]角平分线上的点到角的两边的距离相等.
问题2:能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话.
请填下表:
已知事项:OC平分∠AOB,PD⊥OA,PE⊥OB,D、E为垂足.
由已知事项推出的事项:PD=PE.
于是我们得角的平分线的性质:在角的平分线上的点到角的两边的距离相等.
[师]那么到角的两边距离相等的点是否在角的平分线上呢?
问题3:根据下表中的图形和已知事项,猜想由已知事项可推出的事项,并用符号语言填写下表:
[生讨论]已知事项符合直角三角形全等的条件,所以Rt△PEO≌△PDO(HL).于是可得∠PDE=∠POD.
由已知推出的事项:点P在∠AOB的平分线上.
由此我们又可以得到一个性质:角的内部到角的两边距离相等的点在角的平分线上.这两个性质有什么联系吗?
分析:这两个性质已知条件和所推出的结论可以互换.
思考:
如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,•离公路与铁路交叉处 500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20000)?
1.集贸市场建于何处,和本节学的角平分线性质有关吗?用哪一个性质可以解决这个问题?
2.比例尺为1:20000是什么意思?
结论:
1.应该是用第二个性质.这个集贸市场应该建在公路与铁路形成的角的平分线上,并且要求离角的顶点 500米处.
2.在纸上画图时,我们经常在厘米为单位,而题中距离又是以米为单位,这就涉及一个单位换算问题了. 1m= 100cm,所以比例尺为1:20000,其实就是图中 1cm•表示实际距离 200m的意思.
作图如下:
第一步:尺规作图法作出∠AOB的平分线OP.
第二步:在射线OP上截取OC= 2.5cm,确定C点,C点就是集贸市场所建地了.
总结:应用角平分线的性质,就可以省去证明三角形全等的步骤,使问题简单化.所以若遇到有关角平分线,又要证线段相等的问题,•我们可以直接利用性质解决问题.
III.例题
例 如图,△ABC的角平分线BM、CN相交于点P.求证:点P到三边AB、BC、CA的距离相等.
分析:点P到AB、BC、CA的垂线段PD、PE、PF的长就是P点到三边的距离,也就是说要证:PD=PE=PF.而BM、CN分别是∠B、∠C的平分线,•根据角平分线性质和等式的传递性可以解决这个问题.
证明:过点P作PD⊥AB,PE⊥BC,PF⊥AC,垂足为D、E、F.
因为BM是△ABC的角平分线,点P在BM上.
所以PD=PE.
同理PE=PF.
所以PD=PE=PF.
即点P到三边AB、BC、CA的距离相等.
IV.课时小结
角的平分线的性质范文第4篇
教学目标
1.角的平分线的性质.
2.会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”.
3.能应用这两个性质解决一些简单的实际问题.
教学重点
角平分线的性质及其应用.
教学难点
灵活应用两个性质解决问题.
教学过程
Ⅰ.创设情境,引入新课
拿出课前准备好的折纸与剪刀,剪一个角,把剪好的角对折,使角的两边叠合在一起,再把纸片展开,看到了什么?把对折的纸片再任意折一次,然后把纸片展开,又看到了什么?
分析:第一次对折后的折痕是这个角的平分线;再折一次,又会出现两条折痕,而且这两条折痕是等长的.这种方法可以做无数次,所以这种等长的折痕可以折出无数对.
Ⅱ.导入新课
如图,将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?
PD、PE是否等长?
问题1:如何用文字语言叙述所画图形的性质吗?
[生]角平分线上的点到角的两边的距离相等.
问题2:能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话.
请填下表:
已知事项:OC平分∠AOB,PD⊥OA,PE⊥OB,D、E为垂足.
由已知事项推出的事项:PD=PE.
于是我们得角的平分线的性质:在角的平分线上的点到角的两边的距离相等.
[师]那么到角的两边距离相等的点是否在角的平分线上呢?
问题3:根据下表中的图形和已知事项,猜想由已知事项可推出的事项,并用符号语言填写下表:
[生讨论]已知事项符合直角三角形全等的条件,所以Rt△PEO≌△PDO(HL).于是可得∠PDE=∠POD.
由已知推出的事项:点P在∠AOB的平分线上.
由此我们又可以得到一个性质:角的内部到角的两边距离相等的点在角的平分线上.这两个性质有什么联系吗?
分析:这两个性质已知条件和所推出的结论可以互换.
思考:
如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,•离公路与铁路交叉处 500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20000)?
1.集贸市场建于何处,和本节学的角平分线性质有关吗?用哪一个性质可以解决这个问题?
2.比例尺为1:20000是什么意思?
结论:
1.应该是用第二个性质.这个集贸市场应该建在公路与铁路形成的角的平分线上,并且要求离角的顶点 500米处.
2.在纸上画图时,我们经常在厘米为单位,而题中距离又是以米为单位,这就涉及一个单位换算问题了. 1m= 100cm,所以比例尺为1:20000,其实就是图中 1cm•表示实际距离 200m的意思.
作图如下:
第一步:尺规作图法作出∠AOB的平分线OP.
第二步:在射线OP上截取OC= 2.5cm,确定C点,C点就是集贸市场所建地了.
总结:应用角平分线的性质,就可以省去证明三角形全等的步骤,使问题简单化.所以若遇到有关角平分线,又要证线段相等的问题,•我们可以直接利用性质解决问题.
III.例题
例 如图,△ABC的角平分线BM、CN相交于点P.求证:点P到三边AB、BC、CA的距离相等.
分析:点P到AB、BC、CA的垂线段PD、PE、PF的长就是P点到三边的距离,也就是说要证:PD=PE=PF.而BM、CN分别是∠B、∠C的平分线,•根据角平分线性质和等式的传递性可以解决这个问题.
证明:过点P作PD⊥AB,PE⊥BC,PF⊥AC,垂足为D、E、F.
因为BM是△ABC的角平分线,点P在BM上.
所以PD=PE.
同理PE=PF.
所以PD=PE=PF.
即点P到三边AB、BC、CA的距离相等.
IV.课时小结
角的平分线的性质范文第5篇
(一) 角的平分线的性质
(二)
角的平分线的性质
(一)
教学目标
1、应用三角形全等的知识,解释角平分线的原理.
2.会用尺规作一个已知角的平分线.
教学重点
利用尺规作已知角的平分线.
教学难点
角的平分线的作图方法的提炼.
教学过程
Ⅰ.提出问题,创设情境
问题1:三角形中有哪些重要线段.
问题2:你能作出这些线段吗?
Ⅱ.导入新课
在学直角三角形全等的条件时有这样一个题:
在∠AOB的两边OA和OB上分别取OM=ON,MC⊥OA,NC⊥OB.MC与NC交于C点.
求证:∠MOC=∠NOC.
通过证明Rt△MOC≌Rt△NOC,即可证明∠MOC=∠NOC,所以射线OC就是∠AOB的平分线.
受这个题的启示,我们能不能这样做:
在已知∠AOB的两边上分别截取OM=ON,再分别过M、N作MC⊥OA,NC⊥OB,MC•与NC交于C点,连接OC,那么OC就是∠AOB的平分线了.
思考:这个方案可行吗?(学生思考、讨论后,统一思想,认为可行)
议一议:图中是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗?
要说明AC是∠DAC的平分线,其实就是证明∠CAD=∠CAB.
∠CAD和∠CAB分别在△CAD和△CAB中,那么证明这两个三角形全等就可以了.
看看条件够不够.
所以△ABC≌△ADC(SSS).
所以∠CAD=∠CAB.即射线AC就是∠DAB的平分线.
由此,我们总结出作已知角的平分线的方法:
已知:∠AOB.
求作:∠AOB的平分线.
作法:
①以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.
②分别以M、N为圆心,大于MN的长为半径作弧.两弧在∠AOB内部交于点C.
③作射线OC,射线OC即为所求.
议一议:
1.在上面作法的第二步中,去掉“大于MN的长”这个条件行吗?
2.第二步中所作的两弧交点一定在∠AOB的内部吗?
总结:
1.去掉“大于MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角平分线.
2.若分别以M、N为圆心,大于MN的长为半径画两弧,两弧的交点可能在∠AOB•的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,•否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.
3.角的平分线是一条射线.它不是线段,也不是直线,•所以第二步中的两个限制缺一不可.
4.这种作法的可行性可以通过全等三角形来证明.
探索活动
按以下步骤折纸
1.在准备好的三角形的每个顶点上标好字母;A、B、C;把角A对折,使得这个角的两边重合;
2、在折痕(即平分线)上任意找一点O;
过点O折AC边的垂线,得到新的折痕OD,其中,点D是折痕与AC的交点,即垂足;
4、将纸打开,新的折痕与AB边交点为E.我们由此得出:
角平分线的性质:角平分线上的点到角的两边的距离相等.
下面用我们学过的知识证明发现:
如图,已知AO平分∠BAC,OE⊥AB,OD⊥AC.求证:OE=OD.
Ⅲ. 课时小结
本节课中我们利用已学过的三角形全等的知识,探究得到了角平分线仪器的操作原理,由此归纳出角的平分线的尺规画法,并进一步探究到角平分线的性质.
Ⅳ.思考
在一节数学课上,老师要求同学们练习一道题,题目的图形如图所示,图中的BD是∠ABC的平分线,在同学们忙于画图和分析题目时,小明同学忽然兴奋地大声说:“我有个发现!”原来他自己创造了一个在直角三角形中画锐角的平分线的方法.他的方法是这样的,在AB上取点E,使BE=BC,然后画DE⊥AB交AC于D,•那么BD•就是∠ABC的平分线.
有的同学对小明的画法表示怀疑,你认为他的画法对不对呢?请你来说明理由.
角的平分线的性质
(二)
教学目标
1.角的平分线的性质.
2.会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”.
3.能应用这两个性质解决一些简单的实际问题.
教学重点
角平分线的性质及其应用.
教学难点
灵活应用两个性质解决问题.
教学过程
Ⅰ.创设情境,引入新课
拿出课前准备好的折纸与剪刀,剪一个角,把剪好的角对折,使角的两边叠合在一起,再把纸片展开,看到了什么?把对折的纸片再任意折一次,然后把纸片展开,又看到了什么?
分析:第一次对折后的折痕是这个角的平分线;再折一次,又会出现两条折痕,而且这两条折痕是等长的.这种方法可以做无数次,所以这种等长的折痕可以折出无数对.
Ⅱ.导入新课
如图,将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?
PD、PE是否等长?
问题1:如何用文字语言叙述所画图形的性质吗?
[生]角平分线上的点到角的两边的距离相等.
问题2:能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话.
请填下表:
已知事项:OC平分∠AOB,PD⊥OA,PE⊥OB,D、E为垂足.
由已知事项推出的事项:PD=PE.
于是我们得角的平分线的性质:在角的平分线上的点到角的两边的距离相等.
[师]那么到角的两边距离相等的点是否在角的平分线上呢?
问题3:根据下表中的图形和已知事项,猜想由已知事项可推出的事项,并用符号语言填写下表:
[生讨论]已知事项符合直角三角形全等的条件,所以Rt△PEO≌△PDO(HL).于是可得∠PDE=∠POD.
由已知推出的事项:点P在∠AOB的平分线上.
由此我们又可以得到一个性质:角的内部到角的两边距离相等的点在角的平分线上.这两个性质有什么联系吗?
分析:这两个性质已知条件和所推出的结论可以互换.
思考:
如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,•离公路与铁路交叉处 500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20000)?
1.集贸市场建于何处,和本节学的角平分线性质有关吗?用哪一个性质可以解决这个问题?
2.比例尺为1:20000是什么意思?
结论:
1.应该是用第二个性质.这个集贸市场应该建在公路与铁路形成的角的平分线上,并且要求离角的顶点 500米处.
2.在纸上画图时,我们经常在厘米为单位,而题中距离又是以米为单位,这就涉及一个单位换算问题了. 1m= 100cm,所以比例尺为1:20000,其实就是图中 1cm•表示实际距离 200m的意思.
作图如下:
第一步:尺规作图法作出∠AOB的平分线OP.
第二步:在射线OP上截取OC= 2.5cm,确定C点,C点就是集贸市场所建地了.
总结:应用角平分线的性质,就可以省去证明三角形全等的步骤,使问题简单化.所以若遇到有关角平分线,又要证线段相等的问题,•我们可以直接利用性质解决问题.
III.例题
例 如图,△ABC的角平分线BM、CN相交于点P.求证:点P到三边AB、BC、CA的距离相等.
分析:点P到AB、BC、CA的垂线段PD、PE、PF的长就是P点到三边的距离,也就是说要证:PD=PE=PF.而BM、CN分别是∠B、∠C的平分线,•根据角平分线性质和等式的传递性可以解决这个问题.
证明:过点P作PD⊥AB,PE⊥BC,PF⊥AC,垂足为D、E、F.
因为BM是△ABC的角平分线,点P在BM上.
所以PD=PE.
同理PE=PF.
所以PD=PE=PF.
即点P到三边AB、BC、CA的距离相等.
IV.课时小结
角的平分线的性质范文第6篇
陈明盛
一、教学目标
(一)知识与技能
1.了解角的平分线的判定定理;
2.会利用角的平分线的判定进行证明与计算.
(二)过程与方法
在探究角的平分线的判定定理的过程中,进一步发展学生的推理证明意识和能力.
(三)情感、态度与价值观
在探究作角的平分线的判定定理的过程中,培养学生探究问题的兴趣、合作交流的意识、动手操作的能力与探索精神,增强解决问题的信心,获得解决问题的成功体验.
二、教学重点、难点
重点:角的平分线的判定定理的证明及应用; 难点:角的平分线的判定.
三、教法学法
自主探索,合作交流的学习方式.
四、教学过程
(一) 复习、回顾
1. 角平分线的作法(尺规作图)
①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点; ②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P; ③过点P作射线OP,射线OP即为所求.
2. 角平分线的性质:角的平分线上的点到角的两边的距离相等. ①推导
已知:OC平分∠MON,P是OC上任意一点,PA⊥OM,PB⊥ON, 垂足分别为点A、点B.
求证:PA=PB.
证明:∵PA⊥OM,PB⊥ON
∴∠PAO=∠PBO=90° ∵OC平分∠MON ∴∠1=∠2 在△PAO和△PBO中, ∴△PAO≌△PBO ∴PA=PB
②几何表达:(角的平分线上的点到角的两边的距离相等)
如图所示,∵OP平分∠MON(∠1=∠2),PA⊥OM,PB⊥ON,
∴PA=PB.
(二)合作探究
角平分线的判定:到角的两边的距离相等的点在角的平分线上. ①推导
已知:点P是∠MON内一点,PA⊥OM于A,PB⊥ON于B,且PA=PB. 求证:点P在∠MON的平分线上.
证明:连结OP
在Rt△PAO和Rt△PBO中,
∴Rt△PAO≌Rt△PBO(HL) ∴∠1=∠2 ∴OP平分∠MON
即点P在∠MON的平分线上.
②几何表达:(到角的两边的距离相等的点在角的平分线上.)
如图所示,∵PA⊥OM,PB⊥ON,PA=PB ∴∠1=∠2(OP平分∠MON) 【典型例题】
例1. 已知:如图所示,∠C=∠C′=90°,AC=AC′. 求证:(1)∠ABC=∠ABC′;
(2)BC=BC′(要求:不用三角形全等判定).
分析:由条件∠C=∠C′=90°,AC=AC′,可以把点A看作是 ∠CBC′平分线上的点,由此可打开思路.
证明:(1)∵∠C=∠C′=90°(已知), ∴AC⊥BC,AC′⊥BC′(垂直的定义). 又∵AC=AC′(已知),
∴点A在∠CBC′的角平分线上(到角的两边距离相等的点在这个角的平分线上).
∴∠ABC=∠ABC′.
(2)∵∠C=∠C′,∠ABC=∠ABC′,
∴180°-(∠C+∠ABC)=180°-(∠C′+∠ABC′) 即∠BAC=∠BAC′,
∵AC⊥BC,AC′⊥BC′,
∴BC=BC′(角平分线上的点到这个角两边的距离相等).
例2. 如图所示,已知△ABC的角平分线BM,CN相交于点P,那么AP能否平分∠BAC?请说明理由.由此题你能得到一个什么结论?
分析:由题中条件可知,本题可以采用角的平分线的性质及判定来解答,因此要作出点P到三边的垂线段.
解:AP平分∠BAC.
结论:三角形的三条角平分线相交于一点,并且这一点到三边的距离相等. 理由:过点P分别作BC,AC,AB的垂线,垂足分别是E、F、D. ∵BM是∠ABC的角平分线且点P在BM上,
∴PD=PE(角平分线上的点到角的两边的距离相等). 同理PF=PE,∴PD=PF.
∴AP平分∠BAC(到角的两边的距离相等的点在这个角的平分线上).
(三)巩固训练
练习:第2题
(四)小结
请你说说本届课的收获与困惑.
(五)作业
习题12.3