正文内容
高中正弦定理说课稿
来源:漫步者
作者:开心麻花
2025-09-18
1

高中正弦定理说课稿(精选9篇)

高中正弦定理说课稿 第1篇

一、教材分析

1、教材地位和作用

在初中,学生已经学习了三角形的边和角的基本关系;同时在必修4,学生也学习了三角函数、平面向量等内容。这些为学生学习正弦定理提供了坚实的基础。正弦定理是初中解直角三角形的延伸,是揭示三角形边、角之间数量关系的重要公式,本节内容同时又是学生学习解三角形,几何计算等后续知识的基础,而且在物理学等其它学科、工业生产以及日常生活等常常涉及解三角形的问题。依据教材的上述地位和作用,我确定如下教学目标和重难点

2、教学目标

(1)知识目标:

①引导学生发现正弦定理的内容,探索证明正弦定理的方法;

②简单运用正弦定理解三角形、初步解决某些与测量和几何计算有关的实际问题。

(2)能力目标:

①通过对直角三角形边角数量关系的研究,发现正弦定理,体验用特殊到一般的思想方法发现数学规律的过程。

②在利用正弦定理来解三角形的过程中,逐步培养应用数学知识来解决社会实际问题的能力。

(3)情感目标:通过设立问题情境,激发学生的学习动机和好奇心理,使其主动参与双边交流活动。通过对问题的提出、思考、解决培养学生自信、自立的优良心理品质。通过教师对例题的讲解培养学生良好的学习习惯及科学的学习态度。

3、教学的重、难点

教学重点:正弦定理的内容,正弦定理的证明及基本应用; 教学难点:正弦定理的探索及证明;

教学中为了达到上述目标,突破上述重难点,我将采用如下的教学方法与手段

二、教学方法与手段

1、教学方法

教学过程中以教师为主导,学生为主体,创设和谐、愉悦教学环境。根据本节课内容和学生认知水平,我主要采用启导法、感性体验法、多媒体辅助教学。

2、学法指导

学情调动:学生在初中已获得了直角三角形边角关系的初步知识,正因如此学生在心理上会提出如何解决斜三角形边角关系的疑问。

学法指导:指导学生掌握“观察猜想证明应用”这一思维方法,让学生在问题情景中学习,再通过对实例进行具体分析,进而观察归纳、演练巩固,由具体到抽象,逐步实现对新知识的理解深化。

3、教学手段

利用多媒体展示图片,极大的吸引学生的注意力,活跃课堂气氛,调动学生参与解决问题的积极性。为了提高课堂效率,便于学生动手练习,我把本节课的例题、课堂练习制作成一张习题纸,课前发给学生。

下面我讲解如何运用上述教学方法和手段开展教学过程

三、教学过程设计

教学流程:

引出课题

引出新知

归纳方法

巩固新知

布置作业

四、总结分析:

现代教育心理学的研究认为,有效的性质概念教学是建立在学生已有知识结构基础上的,因此我在教学设计过程中注意了: ㈠在学生已有知识结构和新性质概念间寻找“最近发展区”, ㈡引导学生通过同化,顺应掌握新概念。

㈢设法走出“性质概念一带而过,演习作业铺天盖地”的误区,促使自己与学生一起走进“重视探究、重视交流、重视过程” 的新天地。

我认为本节课的设计应遵循教学的基本原则;注重对学生思维的发展;贯彻教师对本节内容的理解;体现“学思结合﹑学用结合”原则。希望对学生的思维品质的培养﹑数学思想的建立﹑心理品质的优化起到良好的作用.

设计意图:我的板书设计的指导原则:简明直观,重点突出。本节课的板书教学重点放在黑板的正中间,为了能加深学生对正弦定理以及其应用的认识,把例题放在中间,以期全班同学都能看得到。

谢谢!

高中正弦定理说课稿 第2篇

一 教材分析 :

本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理的知识非常重要。

根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:

认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。

能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。教学重点:正弦定理的内容,正弦定理的证明及基本应用。

教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

二 教法

为了更有效地突出重点,突破难点,本节课 采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点.三 学法:

指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力.四 教学过程

第一:创设情景,大概用2分钟

第二:实践探究,形成概念,大约用12分钟

第三:应用概念,拓展反思,大约用6分钟

(一)创设情境,布疑激趣

“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实

际问题引入

“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。

(二)探寻特例,提出猜想

1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

3.让学生总结实验结果,得出猜想:在三角形中,角与所对的边满足关系

这为下一步证明树立 信心,不断的使学生对结论的认识从感性逐步上升到理性。

(三)逻辑推理,证明猜想

1.强调将猜想转化为定理,需要严格的理论证明。

2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。

3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明

(四)归纳总结,简单应用

1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

3.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

(五)讲解例题,巩固定理

(六)课堂练习,提高巩固

(七)小结反思,提高认识

通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?

1.用向量证明了正弦定理,体现了数形结合的数学思想。

2.它表述了三角形的边与对角的正弦值的关系。

3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

大纲要求

(一)课程内容安排上的变化“解三角形”在原课程中为“解斜三角形”安排在“平面向量”一章,作为该章的一个单元。而在《普通高中数学课程标准》中重新进行了整合,将其安排在必修模块数学5中,独立成为一章。“平面向量”则安排在必修模块数学4中。

(二)教学要求的变化

大纲版教材要求

(1)掌握正弦定理、余弦定理,并能运用它们解斜三角形,能利用计算器解决解斜三角形的计算问题。

(2)通过解三角形的应用的教学,提高运用所学知识解决实际问题的能力。

(3)实习作业以测量为内容,培养学生应用数学知识解决实际问题的能力和实际操作的能力。

新课标教材要求

(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。

(2)能运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。

由此可以看出,《普通高中数学课程标准》在计算方面降低了要求,取消了“利用计算器解决解斜三角形的计算问题”的要求,而在探索推理方面提高了要求,要求“通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理”。

(三)课程关注点的变化原《全日制普通高级中学数学教学大纲》中的“解斜三角形”,比较关注三角形边角关系的恒等变换,往往把侧重点放在运算上。而《普通高中数学课程标准》则关注运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题,侧重点放在学生探究和推理能力的培养上。

高中正弦定理说课稿 第3篇

【关键词】正弦函数;余弦函数;周期性;抽象

一、教材分析

教材是新课程标准的具体化,是进行课堂教学设计的蓝本,是教师教、学生学的具体材料,要把握好教材,落实教学目标,必须准确理解课程标准。因此我在认真研读课程标准的基础上从教材的地位与作用、教材重点与难点两个方面展开我对教材的分析。

1.教材的地位与作用

本课选自人教A版数学必修4第一章第4节第2小节第一课时,该课时主要学习函数的周期性。

这节课是在学习了正、余弦函数图像以及三角函数诱导公式之后,对三角函数的又一重要探讨。周期性,是对函数性质的一个重要补充,又是研究三角函数其它性质的根本,所以本课既是前期知识的发展,又是后续知识的基础,起着承前启后的作用。

从思想方法上讲,这节课的教学过程中还渗透了建模、数形结合、由特殊到一般、类比等数学思想方法。

2.教材的重点与难点

根据新课标的要求,我确定本课的重点为,周期函数的定义和正、余弦函数的周期性;难点为:对周期函数概念的理解和求函数的周期。

二、学情分析

从学生的知识储备上看:学生已经学习了正、余弦函数的图像和三角函数的诱导公式,这为学习本课做好了知识上的准备。

从学生思维特点来看:学生具备了一定的形象思维和抽象思维,但还需要进一步加强。

三、教学目标

在充分把握新课程标准的要求,教学内容和教学对象的基本情况的基础上,我制定如下教学目标:

1.知识与技能

准理解周期函数的概念和正弦函数、余弦函数的周期性,会求一个函数的周期。

2.过程与方法

在概念形成与探究的过程中,培养学生观察、分析、抽象、概括的能力和抽象素养,渗透建模、数形结合、由特殊到一般、类比等数学思想方法。

3.情感、态度与价值观

在获取知识的过程中,让学生感受数学来源于生活,又回归于生活,体会数学的应用价值;是学生体会获取知识后成功的喜悦,培养学生的学习兴趣,养成主动探究的习惯。

四、教法学法

1.教学方法

第斯多惠说过:“一个坏的老师奉送真理,一个好的老师则教人发现真理”。因此,我采用引导发现法与启发探究法相结合的教学方法,启发学生在探究的过程中发现真理,体会获得成功的快乐。

2.学习方法

新课标中“倡导积极主动、勇于探索的学习方式”因此,我鼓励他们采用自主探索、合作交流的学习方法,让学生亲身经历知识的形成过程,最终掌握良好的学习方法和学习习惯。

五、教学过程

为了达到预期的教学目标,我设计了以下五个环节。

环节1:创设情境,导入新课

教师用多媒体向同学们展示情境1、情境2. 引导学生发现它们的变化周期,使学生对周期有初步的认识。再让学生进入情境3,说一说。

情境1:四季变化的图片。

情景2:月亮圆缺现象,即一个月的月亮图形。

情境3:鼓励学生列举类似的周而复始的现象。 紧接着,说明这种现象是周期性。

设计思路: 皮亚杰曾说:没有一个行为模式不含有情感因素作为动机。这样的设计不仅激发了学生的学习兴趣,还使学生对周期有一个初步的认识。

师:数学源于生活,但高于生活,数学是自然规律的高度概括与抽象。那么,我们用数学语言如何刻画周期性?

设计思路:由生活中的自然现象自然过渡到数学课堂中,使学生感受到数学源于生活。

环节2:观察分析,形成概念

问题1:观察正弦函数、余弦函数的图像,指出它的定义域和值域分别是什么?

设计思路:学生们容易想到正、余弦函数就是周期函数的代表。首先,带领学生回顾其图像,得到正弦函数、余弦函数的定义域和值域,为本节课的难点做铺垫。

问题2:正弦函数图像有何规律?其本质是什么?

设计思路:“教学过程是一种提出问题和解决问题的持续不断的活动,思维永远是从问题开始。”留给学生充分的时间,进行小组讨论,之后请小组代表汇报结果。学生可以得到该图像是以2π、4π等为单位的周而复始的变化。但对于其本质,部分同学难以表达。

问题3:观察下面的图形和三组点,分析并总结这几组点有什么共同特征?

设计思路:对于正弦函数图像规律的本质,一些同学难以理解。我以2π为周期为例,化抽象为形象,帮助学生理解周期函数的本质,为概念形成打下良好的基础。让学生观察几组特殊点,分析共同属性,同学们经过交流,抽象得到其本质。

问题4:你能将正弦函数的周期性推广到一般函数,得到周期函数的定义么?

定义:对于函数f(x),如果存在一个非零常数T,使得当X取定义域内的每一个值时,都有f(x+T)=f(x),那么f(x)就叫周期函数。非零常数T叫做这个函数的周期。

设计思路:趁热打铁,启发同学们将它推广到一般函数,在小组中交流后,形成周期函数的概念。这样的设计有利于培养学生观察、分析、抽象概括的能力,培养学生的六大核心素养之一——抽象素养,同时,进一步渗透数形结合的思想方法。

问题5:一个函数的周期是唯一的么?其周期中最小的正数是多少?

生:不是唯一的,例如正弦函数的周期有2π,4π,6π…,最小正数是2π。

此时,我便给出最小正周期的概念:如果在周期函数f(x)的所有的周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期(如果不加特别说明,周期一般都是指函数的最小正周期)。

设计意图:直接给出最小正周期的概念,以概念同化的形式让学生学习此概念,扩大了学生原有的认知结构。

问题6:是不是每一个周期函数都有最小正周期呢?

生:常函数f(x)=c没有最小正周期。

设计思路:学生通过对已学的函数进行讨论,得到常函数没有最小正周期。

问题7:我们已经基本掌握了正弦函数的周期性,通过类比的方法,你能得到余弦函数的周期性么?

师:正弦函数是周期函数,2kπ(k∈Z,k≠0)都是它的周期,最小正周期是2π。

生:余弦函数是周期函数,2kπ(k∈Z,k≠0)都是它的周期,最小正周期是2π。

设计思路:学生通过类比的方法,进行知识性的小结,再次理解函数的周期性。

环节3:合作探究,深入理解

探究1:用定义法求下列函数的周期。

设计思路:本环节是这节课的难点。我采用由一般到特殊的方法,先给出一个例题,请同学们独立完成。本题既是对周期函数定义的考察,又是为探究正余弦型函数周期公式做铺垫,起着承上启下的作用。我将对一二题进行分析,首先看第一题,观察f(x)的形式,由正弦函数的周期为2π得到f(x+T)的形式,T既是此函数的周期。再看第二题,需要将2x看成一个整体,同理得到其周期周期。通过对前两题的分析,让同学们对第三题进行整理、分析、交流、展示。

探究2:你能从探究1的解题过程中,猜想出y=Asin(ωx+φ)(x∈R)(其中A,ω,φ为常数,且A≠0,ω?0)的周期与解析式里的哪些量有关?

设计思路:同学们在小组内交流后发现:(1)ω=1,T=2π;(2)ω=,T=π ,得到函数的周期仅与ω的值有关,并猜想得到周期公式 。数学是抽象的,为了让学生形象感知,我将在几何画板中,通过改变A、W、Q量,验证此猜想的一般性。同时,数学也是严谨的,学生类比探究1的第(3)题的证明演绎推理得到该函数周期公式。同理,得到余弦型函数周期公式。

环节4:运用新知,巩固提升

练习1:求函数 的周期。

变式:求函数 的周期。

练习2:若钟摆的高度h(mm)与时间t(s)之间的函数关系如图所示.

(1)求该函数的周期;

(2)求t=10s时钟摆的高度。

设计思路:学生知识的掌握是通过“学得”和“习得”而来的,所以我给出了两道练习题。练习1是基本型的,直接利用公式,目的是强化学生对公式的理解,变式是对公式的灵活运用,需要先应用诱导公式。练习2是一道实际应用题,不仅考察了学生对周期函数的理解,还体现了数学的应用价值。

环节5:温故反思,任务后延

1.温顾反思

(1)本节课你学习了哪些知识?

(2)本节课你学习了哪些思想方法?

设计思路:我以学生为主体归纳本节所学知识和思想方法。目的是帮助学生建构知识体系,深化认知结构。

2.任务后延

必做题:课本P36:练习1、练习2

选做题:你认为求函数y=Asin(ωx+φ)(x∈R)和y=Acos(ωx+φ)(x∈R)(其中A,ω,φ为常数,且A≠0,ω?0)的方法能否推广到一般函数的周期上去?即命题:

“如果函数f(x)的周期是T,那么函数y=f(x)的周期是 ”是否成立?

设计思路:针对学生差异我设计了必做题和选做题,这样使人人都学数学,不同的人在数学上得到不同的发展。

六、板书设计

七、设计分析

本课在“教师为主导,学生为主体”的教学思想的指导下,以周期函数概念的形成,正弦函数、余弦函数的周期性,正弦型、余弦型函数周期公式作为明线,让学生由感性认识上升到理性认识,感受其应用价值。在教学当中,我还将通过学生的课堂反馈及时调整自己的教学内容和方法,使自己的教更好的服务于学生的学。

参考文献:

[1]何小亚.中学数学教学设计[M].北京:科学出版社,2012:249.

[2]孙培青.教育名言录.上海:上海教育出版社,1984:67.

正弦定理说课稿 第4篇

一、教材分析

《正弦定理》这节课是在学生学习了三角函数、平面向量知识之后的进一步探索。正弦定理是三角函数知识与平面知识在三角形中的交会应用。为以后学习《余弦定理》提供了方法上的模式,为后续学习解三角形提供了理论依据,是解决实际生活中三角形问题的有力工具之一,使学生进一步了解数学在实际中的应用。正弦定理的推导过程运用了从特殊到一般、分类讨论的数学思想,这些思想将贯穿于整个高中数学的学习过程。正弦定理教学时数的安排为2课时,本节课的内容是定理的推导及定理的简单应用。

二、学情分析

本节课授课的对象是高一学生。在此之前学生已经学习了三角函数和平面向量的知识,为本节课的学习奠定了基础。学生在初中时已经学习过任意三角形中大边对大角,小边对小角的边角关系这为本节课学习做了铺垫。在之前的学习中学生已经有了一定的探究、分析、解救问题的能力,有利于本节课的学习。

三、教学目标、重点难点

根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,我制定如下教学目标:

知识与技能:理解并掌握正弦定理的证明,运用正弦定理解三角形

过程与方法:提高应用所学知识解决实际问题的意识和能力;学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,体会数形结合的思想方法

情感态度价值观:通过推导得出正弦定理,感受数学公式的简洁美和对称美,激发学生热爱科学勇于探索的精神,培养学生勇于创新,多方位审视问题的创造技巧

四、教学重、难点

基于以上教学目标分析我认为本节课的教学重点是正弦定理的内容,正弦定理的证明及基本应用,教学难点是正弦定理的探索证明及在实际问题和解三角形中的应用。

三、教法与学法

根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,采用探究式课堂教学模式,指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取自主式、合作式、探讨式的学习方法。

四、教学过程

下面我来具体谈一谈这节课的教学过程:

1、提出问题,引发思考

教师直接提出问题,让学生对已有的三角形边角关系进行梳理,为学习新课做好铺垫,同时提出这节课将继续研究三角形的边角关系,明确研究的主题。

(1)三角形三边之间有什么关系?(2)三角形三角之间有什么关系?(3)三角形边角之间有什么关系?

2、.观察特例,归纳猜想 能否将三角形的边角关系准确量化

激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,利用三角函数的知识发现正弦定理。

引导学生猜想结论对任意三角形都适用吗?

3、逻辑推理,证明猜想

强调将猜想转化为定理,需要严格的理论证明。在证明时要注意分类讨论。

鼓励学生通过作高转化为熟悉的直角三角形进行证明。师生一起证明当三角形为锐角三角形时结论成立,学生课后自行证明钝角三角形的情况

思考是否还有其他的方法来证明正弦定理,提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

4、归纳总结,简单应用

1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。2.正弦定理的内容,根据公式的结构讨论可以解决哪几类有关三角形的问题。

5、讲解例题,巩固定理

1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可直接利用正弦定理来解三角形。

2. 例2.在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。

6、课堂练习,提高巩固

1.在△ABC中,已知下列条件,解三角形.(1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm 2.在△ABC中,已知下列条件,解三角形.(1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°

学生板演,老师巡视,及时发现问题,并解答。

7、小结反思,提高认识

通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会? 1.用几何方法正弦定理,体现了数形结合的数学思想。2.它表述了三角形的边与对角的正弦值的关系。

3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

8、布置作业

正弦定理的说课稿 第5篇

大家好,今天我向大家说课的题目是《正弦定理》。下面我将从以下几个方面介绍我这堂课的教学设计。一 教材分析

本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。

根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:

认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。

能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。教学重点:正弦定理的内容,正弦定理的证明及基本应用。

教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。二 教法

根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点 三 学法:

指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。四 教学过程

第一:创设情景,大概用2分钟

第二:实践探究,形成概念,大约用25分钟

第三:应用概念,拓展反思,大约用13分钟

(一)创设情境,布疑激趣 兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。

(二)探寻特例,提出猜想

1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

3.让学生总结实验结果,得出猜想: 在三角形中,角与所对的边满足关系

这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。

(三)逻辑推理,证明猜想

1.强调将猜想转化为定理,需要严格的理论证明。

2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。

3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明

(四)归纳总结,简单应用

1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

3.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

(五)讲解例题,巩固定理

1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

2. 例2.在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。

(六)课堂练习,提高巩固

1.在△ABC中,已知下列条件,解三角形.(1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm 2.在△ABC中,已知下列条件,解三角形.(1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°

学生板演,老师巡视,及时发现问题,并解答。

(七)小结反思,提高认识

通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会? 1.用向量证明了正弦定理,体现了数形结合的数学思想。2.它表述了三角形的边与对角的正弦值的关系。

3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

(从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。)

(八)任务后延,自主探究

高中正弦定理说课稿 第6篇

陕西师大附中 张 辉

点明课题

本节课是普通高中课程标准实验教科书必修5第二章《解三角形》中的2.1《正弦定理》的内容,该节包括正弦定理的发现、探索、证明和应用,我把这节内容分为2课时,现在我要说的是《正弦定理》的第一课时,主要包括正弦定理的发现、探索、证明和简单的应用。

下面我从四个方面来说说对这节课的分析和设计:

一、教材地位分析

《正弦定理》是普通高中课程标准实验教科书必修5中第二章《解三角形》的学习内容,比较系统地研究了解三角形这个课题。对比同学们在初中学习过的解直角三角形,解三角形虽是少了一个字,明显我们面临解决的问题范围却扩大了。因此,本章内容是对初中解直角三角形内容的直接延伸,在解直角三角形时主要借助三角形内角和定理、三角函数和方程的思想来实现,这种方法当然是局限于直角三角形,面对一般的三角形同学将束手无策。《正弦定理》紧跟必修4(包括三角函数与平面向量)之后,可以启发学生联想所学知识,运用三角函数知识作为工具,运用转化与化归作为指导思想,推导出正弦定理。正弦定理是求解任意三角形的基础,又是学生了解三角形中存在边与角的定量关系的一个开端,对进一步学习任意三角形的求解、体会事物是相互联系的辨证思想均起着举足轻重的作用。

作为三角形中的一个定理,而定理本身的应用(定理应用放在下一节专门研究)又十分广泛,因此做好该节内容的教学,使学生通过对任意三角形中正弦定理的探索、发现和证明,感受“类比—猜想—证明”的科学研究问题的思路和方法,体会由“定性研究到定量研究”这种数学地思考问题和研究问题的思想,养成大胆猜想、善于思考的品质和勇于求真的精神。

同时,通过本节课的学习为后面学习《余弦定理》提供了方法上的模式;为将来解决测量、工业、几何等方面的实际问题提供了理论基础,使学生进一步感受、了解到数学在实际中的应用。

二、教学目标分析

根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

认知目标:在创设的问题情境中,使学生主动地去发现正弦定理的内容和推证正弦定理及简单运用正弦定理

能力目标:通过对正弦定理的引入、推导和应用,培养学生的创新意识和思维能力,能体会用“作高”将一般三角形转化为直角三角形;将几何问题转化为代数问题。

情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣;培养学生合情推理探索数学规律的数学思想,体验由特殊到一般的数学方法,培养学生在方程思想指导下解三角形运算能力。

三、教学问题诊断分析

①为什么要研究正弦定理?正弦定理是怎样被发现的?其证明方法又是如何想到的?还有别的求证方法吗?这些都是教材没有回答,而确实又是学生所关心的问题.②教材是从特殊的三角形即直角三角形入手,来研究三角形中所存在的边与角之间的定量关系的,后又拓展到锐角三角形和钝角三角形,进而探究出正弦定理,这体现了数学学科中的从特殊到一般的思想。然而现实生活中直角三角形的实例要比斜三角形少的多,而教材却没有从斜三角形切入问题,这样代表性不就降低了吗?

③教材仅有的两道例题中,所给出的数据都要用到计算器进行演算。这样会不会给学生造成一种错觉,即凡是用正弦定理解决的问题都要使用计算器呢?

④教材中,正弦定理第一课时的教学内容就涉及到了三角形中的“多解”情况,如果按照新课标中“注重学生发现、探究、猜想、证明”的教学理念,那么教学时间是否充裕?

以上问题仅是我个人在教学中的一点体会和认识,尚有诸多不足之处,还望各位专家及老师批评指正。

四、教法特点及预期效果分析

教学设计本着学生心理和发展特点原则,尽量符合学生的认知规律,时时关注学生的兴趣、体验、困惑、疑难等,有效地发挥教师的组织、引导、激励作用,尽可能使学生在多方面得到发展。

教无定法,贵在得法。下面便是我本节课的一些基本构思

本课基本构思:

本节课,学生在不知正弦定理内容和证明方法的前提下,在我预设的思路中,学生积极主动参与一个个相关联的探究活动过程,通过“发现类比实验猜想验证证明”的数学思想方法发现并证明定理,让学生经历了知识形成的过程,感受到创新的快乐,激发学生学习数学的兴趣。其次,以问题为导向设计教学情境,促使学生去思考问题,去发现问题,让学生在“活动”中学习,在“主动”中发展,堂教学太过于重视结论,轻视过程。为了应付考试,为了使对公式定理应用达到所谓的“熟能生巧”,教学中不惜花大量的时间采用题海战术来进行强化。在数学概念公式的教学中,往往采用的所谓“掐头去尾烧中段”的方法,到头来把学生强化成只会套用公式的解题机器,这样的学生面对新问题就束手无策。新课程倡导:强调过程,强调学生探索新知识的经历和获得新知的体验,不能再让学生脱离学生的内心感受,必须让学生追求过程的体验,把“数学发现的权利”还给学生。

基于以上认识,本节课我所考虑的不是简单的把正弦定理的内容告诉给学生,而是创设一些数学情境,让学生自己去发现定理,证明定理。从发现定理的过程中让学生体会到:定理并不是凭空产生的,发现定理并不都是高不可攀的事情,通过努力,也可以做一些看似数学家才能完成的事。在这个过程中,学生在课堂上的主体地位得到充分发挥,极大的激励了学生的学习兴趣,也提高了他们提出问题、解决问题的能力,培养了他们的创新能力,这正是新课程所倡导的教学理念。

授课过程中的一点遗憾:

由于这种探究课型在平时的教学中还不够深入,有些学生往往以一种观赏者的身份参与其中,主动探究意识不强,思维水平没有达到足够的提升。但相信随着课改实验的深入,这种状况会逐步改善。此外,由于目前高一的学生还没有学习“平面向量”,因此,对于正弦定理的证明方法没有涉及到“向量法”。教授本课的收获:

正弦定理和余弦定理 第7篇

正、余弦定理是高考的必考内容,主要涉及解三角形中的求角、求边的问题和判断三角形的形状.

(1)解三角形就是已知三角形中的三个独立元素(至少一边)求出其他元素的过程. 三角形中的基本元素(边和角)与非基本元素(如中线、高、角平分线、外接圆半径、内切圆半径)之间的联系要通过有关的概念与公式(周长、面积、射影定理、勾股定理、内角和定理、全等关系、正余弦定理等)的掌握来实现.

(2)解斜三角形分以下四种类型:

①已知三角形的两角和任一边,求三角形的其他边与角;

②已知三角形的两边和其中一边的对角,求三角形的其他边与角;

③已知三边,求三个角;

④已知两边和它们的夹角,求第三边和其他两个角;

(3)理解已知两边和其中一边的对角解斜三角形时,有一解、二解或无解三种情况,并会判断哪些条件使得三角形有一解、二解或无解.

(4)关于三角形的已学过的一些结论:如边角不等关系;全等关系;三角形的面积公式等等,在解三角形过程中可能要用到.

(5)要注意归纳总结学习过程中的一些共性和结论. 如常见的三角形边角关系恒等式、三角形面积的公式等.

(6)注意三角公式的灵活运用,主要是利用两角和与差的三角函数、二倍角的三角函数,诱导公式等进行三角函数变换.

高中正弦定理说课稿 第8篇

内蒙古包头市第一中学

王晓慧

一、本课的教学内容及其地位和作用

《正弦定理》共2课时,本课是第1课时,学生在初中已经学习了直角三角形中的边角关系和三角形全等的判定,本课是在此基础上继续研究任意三角形中的边角关系,教师带领学生从已有的知识出发,通过探究得到正弦定理,理解定理的内容并能运用正弦定理解三角形的两类问题,结合三角形全等的判定,理解在已知边边角的情况下,三角形解的个数不确定。学生在此之前已经学习了三角函数、平面向量、圆等内容,使得这部分内容的处理有了比较多的工具,教学过程中按照从简原则和最近发展区原则,采用“作高”的方式证明了正弦定理,之后,为了发展学生的思维,学会思考数学问题,又引导学生从向量、作外接圆、三角形面积计算等几个角度找到证明的途径,渗透了事物间普遍联系的辩证唯物主义观点。

本章的中心内容是解三角形,正弦定理是解三角形的重要工具之一,是对三角知识的应用,又是对初中解直角三角形内容的直接延伸,在日常生活和工业生产中也时常有解三角形的问题,在天文、航海测量中也有广泛应用(在下一节中专门研究),充分体现了“数学是有用的”,对培养学生应用数学的意识起到重要作用。

二、本课的数学本质与教学目标定位

在数学发展史上,受到天文测量、航海测量和地理测量等方面实

践活动的推动,解三角形的理论得到不断发展。如:怎样在航行途中测出海上两个岛屿之间的距离?怎样测量底部不可到达的建筑物的高度?怎样测出在海上航行的轮船的航向和航速?„„在生产、生活实际中也会遇到例如:怎样确定楼间距,使得一楼的住户也能得到较为充足的阳光?怎样充分利用废旧钢板来节约成本?„„这些都是学生非常感兴趣的生活现实,大千世界,数学无处不在,正如荷兰数学家弗赖登塔尔在他所著的《作为教育任务的数学》一书中所讲:“数学起源于现实”,“数学教师的任务之一是帮助学生构造数学现实,并在此基础上发展他们的数学现实。”教学中,通过“如何测出地月之间的距离”来布疑激趣,带领学生进入解三角形内容的学习,通过探究,由特殊到一般得到正弦定理,引导学生多角度思考证明正弦定理,体会数学知识彼此紧密联系的特点,从而感受数学的魅力。

教学过程中,让学生经历提出问题、解决问题、初步应用等过程,使学生成为正弦定理的“发现者”和“创造者”,《课程标准》将解三角形作为几何度量问题来展开,重在正弦定理在解三角形中的应用,而不必在恒等变换上进行过于繁琐的训练。这就要求在教学中突出几何的作用和数学量化的思想,发挥学生学习的主动性,使学生的学习过程成为在教师引导下的探究、再创造过程。

基于此,本课的教学目标定位在:1.在创设的问题情境中,引导学生发现正弦定理,推证正弦定理及简单运用正弦定理与三角形内角和定理解斜三角形的两类问题;2.通过探究在任意三角形中,边与其对角正弦的比值之间的关系,培养学生观察,猜想,由特殊到一

般归纳得出结论的能力和化未知为已知解决问题的能力;3.面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。

三、教学诊断分析

学生在初中已经学习了锐角三角函数,在必修4中又研究了任意角的三角函数,所以很容易根据直角三角形中的边角关系,得出直角三角形中的正弦定理,从而引出课题:这一结论在任意三角形中还成立吗?证明这个结论是一个难点,特别是钝角三角形中,教师通过引导学生如何化未知为已知,从而找到解决问题的途径。再引导学生思考:什么运算可以把长度和角度联系在一起?从而得到多种解决问题方法。运用定理解三角形不难做到,但是在运用定理的过程中,有一点是学生不容易想到的,也是难以理解的,就是在已知三角形中两边和其中一边的对角时,解的情况不唯一,教师通过引导学生回忆初中所学的三角形全等的判定,“边边角”不能判定三角形全等来理解,本节课只需要让学生知道这一点,详细探究在以后完成。

四、教法特点和预期效果分析

原苏联数学教育家斯托利亚尔在他所著的《数学教育学》一书中指出:“数学教学是数学活动的教学 ”,“数学活动是思维活动,对数学家而言,这是一个发现活动;对于数学教学来说,我们要教给学生的不是死记现成的材料,而是发现数学真理(自己独立的发现科学上已经发现了的东西),学生发现那些在科学上早已被发现的东西的时

候,他是像第一次发现者那样去推理的。”在弗赖登塔尔的论述中也指出:“学生通过自己努力得到的结论和创造是数学教育内容的一部分”。新课标也在倡导积极主动、勇于探索的学习方式。基于这样的理念的指导,结合本课的教学内容,本课采用探究发现式教学法,以“如何测量地月之间的距离”来创设问题情境,以问题驱动课堂,使学生的思维始终活跃于如何解决问题的探究活动中,通过师生之间、生生之间的评价来完善对问题的理解和对定理的应用,创造和谐、愉快、平等的学习氛围,体现学生的主体地位,让学生体验快乐学习,同时培养学生学习数学的兴趣和能力。

高中正弦定理说课稿 第9篇

我今天说课的题目是必修2第七章第七节《动能和动能定理》,我将从以下几个方面进行的说课,教材分析,学生学情,教学目标,教法学法,教学过程,板书设计。

一、教材分析

本节内容主要主要学习一个物理概念:动能;一个物理规律:动能定理,通过前几节的学习,学生已认识到某个力对物体做工就一定对应着某种能量的变化。在本章第一节追寻守恒量中,学生也知道物体由于运动而具有的能叫动能,那么物体的动能跟那些因素有关,引起动能变化的原因是什么?这都是本节课要研究的内容,通过本节课的学习,既深化了对功的理解,对功是能量变化的量度有了进一步的理解,拓展了求功的思路,也为下一节机械能守恒定律的学习打下了基础,并为用功能关系处理问题打开了思维通道,因此本届内容在本章具有承前启后的作用,是关建的一节,是重点的一节。

二、学生学情

深入了解学生是上好课的关键,我对学生的基本情况分析如下:

(1)学生已经知道物体由于运动而具有的能叫做动能。

(2)学生已经认识到做功必然引起对应能量发生变化。

(3)学生已经知道用牛顿第二定律和运动学公式可以把力学量与运动联系到一起。

(4)通过三年多物理知识的学习,学生已经具备了一定的实验能力、分析问题能力、归纳总结能力。

三、教学目标

(一)、三维目标

知识与技能:

1、理解动能的概念、单位以及符号

2、理解动能定理及其物理意义

3、理解做功的过程是能量转化的过程

过程与方法:

通过动能定理的推导,体会演绎推理方法在科学研究中的应用

情感态度与价值观:

1、通过动能定理演绎推理过程,培养对科学研究的兴趣

2、通过动能定理应用的学习,领会用动能定理解题的优越性

(二)教学重点和难点

重点:对动能公式和动能定理的理解与应用。

难点:通过对动能定理的理解和应用,加深对功、能关系的认识。

关键点:动能定理的推导

四、教法学法

教法(主要采用探究发现法):

1、直观演示法、问题探究的方式(创设情景,引发兴趣)

2、活动探究法(理论推理)

3、集体讨论法(提出问题,学生讨论,分析归纳总结)

学法:观察思考、思考评价法、分析归纳法、总结反思法

五、教学过程

1、复习提问,引出课题

2、实验演示,分析影响动能的因素

3、理论推导,归纳总结,得出结论

4、拓展延伸,引出动能定理

5、典例引领,内化反思

6、反思总结,加深记忆

(一)本章第一节“追寻守恒量”告诉我们物体由于运动而具有的能叫动能;上一节我们探

2那么动能的大小与哪些因素有关,具体的表达式如何究了功和速度的关系得出了呢?

出示课题:动能和动能定理

(二)实验演示,分析影响动能的因素

演示观察实验思考:

(1)从高度相同质量不同的小球滚到底端谁的速度大?谁做的功多?谁得动能大?

(2)从高度不同质量相同的小球到低端谁的速度大?谁做的功多?哪个的动能大呢?

(3)总结一些动能与那些因素有关?

(以达到引发学生兴趣为目的)

结论:质量大,速度决定动能大小。

3、理论推导,归纳总结,得出结论

情境展示:例1、在光滑的水平面上,质量为m的物体在水平力F的作用下移动L,速度由V1增大到V2。

提出问题:学生推导

1、力F对物体所做的功是多大?

2、物体的加速度多大?

3、物体的初速度、末速度、位移之间有什么关系?

4、综合上述三式,你能推导得出什么样的式子?

5、归纳总结,得出结论

(1)它包含了影响动能的两个因素:m和v

(2)这个过程末状态与初状态的差,正好等于力对物体做的功

(3)它涵盖了我们前面探究得到的结论W∝V

2.于是我们说质量为m的物体,以速度v运动时的动能为Ek

(1)概念:

(2)动能的标矢性:

(3)动能的单位:

(4)动能式状态量还是过程量

4、拓展延伸,引出动能定理,组织学生一起进一步分析例1的推导结果:提出问题:

(1)等式左边W的意义

(2)等式右边意义是什么?

(3)此式的又表达了什么意思?

(4)结论.上面关系表明:

概念:合外力在一个过程中对物体做的功,等于物体在这个过程中的动能变化。这个结论叫做动能定理。

(1)W为合力所做的功,公式右边代表着变化量

(2)当物体在变力作用下或者是做曲线运动时,动能定理也同样适用。

5、典例引领,内化反思

例2一架喷气式飞机质量为m=5000kg,起飞过程中从静止开始滑跑。当位移达到L=530m时,速度达到起飞速度v=60m/s。在此过程中飞机受到的平均阻力是飞机重量的0.02倍。求飞机受到的牵引力

6、反思总结,加深记忆

1、为什么动能定理能解决变力问题?

2、建立动能和动能定理用了什么研究方法?

3、建立动能定理经历了那些过程?

4、这节课有什么收获(课堂小结)?

目的(通过问题,引导学生对认知过程、结果进行自我检查)

高中物理《动能和动能定理》的说课稿2

尊敬的各位专家,下午好!

今天我说课的题目是《动能和动能定理》教学设计及分析。

一、教材分析

《动能和动能定理》是人教版高中新教材必修2第七章第7节,动能定理实际上是一个质点的功能关系,它贯穿于这一章教材,是这一章的重点.课本在讲述动能和动能定理时,没有把二者分开讲述,而是以功能关系为线索,同时引人了动能的定义式和动能定理.这样叙述,思路简明,能充分体现功能关系这一线索.考虑到初中已经讲过动能的概念,这样叙述,学生接受起来不会有什么困难,而且可以提高学习效率。根据新课标要求通过本节课教学要实现如下教学目标。

二、教学目标

根据上述教材结构与内容分析,依据课程标准,考虑到学生已有的认知结构、心理特征,制定如下教学目标:

1、知识与技能

1)理解动能的概念,会用动能的定义式进行计算。

2)理解动能定理及动能定理的推导过程。

3)知道动能定理的适用条件,知道动能定理解题的步骤

2、情感态度与价值观目标

通过动能定理的演绎推导.感受成功的喜悦,培养学生对科学研究的兴趣。

3、教学重点、难点

本着课程标准,在吃透教材、了解学生学习特点的基础上,我确立了如下的教学重点、难点。

重点:知道动能定理解题的步骤

难点:会用动能定理解决有关的力学问题。

三、教学方法

通过让学生亲自动手进行实验与探究充分调动学生的积极性,实验方案以小组合作研讨的方式参考教材提出的问题由学生自行设计,培养学生的合作精神,探究意识,体现学生的主体作用和教师的主导作用,将实验和理论分析相结合,体现教学和学习方式的多样化。

四、教学过程

(引入新课)

通过上节课的探究,我们已经知道了力对物体所做的功与速度变化的关系,那么物体的动能应该怎样表达?力对物体所做的功与物体的动能之间又有什么关系呢?这节课我们就来研究这些问题。

1、动能表达式

【提问】我们在学习重力势能时,是从哪里开始入手进行分析的?这对我们讨论动能有何启示?

总结:学习重力势能时,是从重力做功开始入手分析的。讨论动能应该从力对物体做的功入手分析。

(通过知识的迁移,找到探究规律的思想方法,形成良好的思维习惯。)

设物体的质量为m,在与运动方向相同的恒定外力F的作用下发生一段位移l,速度由v1增加到v2,如图所示。试用牛顿运动定律和运动学公式,推导出力F对物体做功的表达式。

【提问】教材上说“xx”很可能是一个具有特殊意义的物理量,为什么这样说?

总结:质量为m的物体,以速度v运动时的动能为xx2、动能是标量,国际单位制中,动能的单位是J(焦耳)

3、动能定理

1)表达式

有了动能的表达式后,前面我们推出的xx,就可以写成xxx

其中xx表示一个过程的末动能xx,xx表示一个过程的初动能xx。

2)概念:力在一个过程中对物体所作的功,等于物体在这个过程中动能的变化。这个结论叫做动能定理。[来源:学科网]

【提问】

1)如果物体受到几个力的作用,动能定理中的W表示什么意义?结合生活实际,举例说明。

2)动能定理,我们实在物体受恒力作用且作直线运动的情况下推出的。动能定理是否可以应用于变力作功或物体作曲线运动的情况,该怎样理解?

4、能力训练

例题1和例题2,引导学生一起分析、解决。

5、帮助学生总结用动能定理解题的要点、步骤,体会应用动能定理解题的优越性。

1)动能定理不涉及运动过程中的加速度和时间,用它来处理问题要比牛顿定律方便.2)用动能定理解题,必须明确初末动能,要分析受力及外力做的总功.3)要注意:当合力对物体做正功时,末动能大于初动能,动能增加;当合力对物体做负功时,末动能小于初动能,动能减小。

6、总结归纳

本节课的内容是高中物理的一个重中之重,是高考中必考的内容之一,并且所占的比重非常大,本节连同下一节内容(机械能守恒定律)是用能量观点解决问题的重要组成部分,这两节课后可以加适当的习题课加以巩固,也可以在本节课后就加一节习题课.本节课的内容不是十分复杂,在用牛顿定律推导动能定理时学生一般都能够自己推导,要放开让学生自己推导,以便学生对动能定理的进一步认识。

动能定理的应用当然是这一节课的一个关键,这节课不可能让学生一下子就能够掌握应用这个定理解决问题的全部方法,而应该教给学生最基本的分析方法,而这个最基本分析方法的形成可以根据例题来逐步让学生自己体会。

相关文章
2025年全国注册监理工程师延续注册-系统考试试题

2025年全国注册监理工程师延续注册-系统考试试题

2025年全国注册监理工程师延续注册-系统考试试题(精选6篇)2025年全国注册监理工程师延续注册-系统考试试题 第1篇2015年全国注册监理工程...

3
2025-09-19
秋九年级思想品德备课组工作计划

秋九年级思想品德备课组工作计划

秋九年级思想品德备课组工作计划(精选12篇)秋九年级思想品德备课组工作计划 第1篇九年级思想品德备课组工作计划一、指导思想:高举有中...

1
2025-09-19
2024年实验高中安全知识竞赛策划书

2024年实验高中安全知识竞赛策划书

2024年实验高中安全知识竞赛策划书(精选11篇)2024年实验高中安全知识竞赛策划书 第1篇2014年大方县“安全生产月”系列活动之安全知识竞...

2
2025-09-19
2010年预防传染病工作总结

2010年预防传染病工作总结

2010年预防传染病工作总结(精选15篇)2010年预防传染病工作总结 第1篇2010年丰都中心小学疾病和传染性疾病防控工 作 总 结传染病防治...

1
2025-09-19
退伍兵简历自我评价

退伍兵简历自我评价

退伍兵简历自我评价(精选5篇)退伍兵简历自我评价 第1篇2016退伍兵简历自我评价退伍兵简历自我评价【退伍军人简历自我评价(一)】入伍十八...

1
2025-09-19
2020年医院各部门科室岗位职责

2020年医院各部门科室岗位职责

2020年医院各部门科室岗位职责(精选4篇)2020年医院各部门科室岗位职责 第1篇医院各部门科室岗位职责2020年总结(一)保安队长职责一、实行...

2
2025-09-19
2020给老人的新春祝福语

2020给老人的新春祝福语

2020给老人的新春祝福语(精选10篇)2020给老人的新春祝福语 第1篇2020给老人的新春祝福语11、怀揣崭新希望,穿过泥泞沟坎,义无反顾奔向...

1
2025-09-19
2022--2023 第二学期明德小学少先队计划

2022--2023 第二学期明德小学少先队计划

2022--2023 第二学期明德小学少先队计划(精选12篇)2022--2023 第二学期明德小学少先队计划 第1篇2022-2023学第二学期小学教师个人课...

1
2025-09-19
付费阅读
确认删除?
回到顶部