正文内容
高中数学立体几何总结
来源:文库
作者:开心麻花
2025-09-18
1

高中数学立体几何总结(精选12篇)

高中数学立体几何总结 第1篇

我个人觉得,解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:

(1) 两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影所成的角。

(2) 异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转化为线面距离,再转化为点面距离,点面距离又可转化为点线距离。

(3) 面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。

高中数学立体几何总结 第2篇

高中数学二项分布知识点总结: 二项分布:就是对这类只具有两种互斥结果的离散型随机事件的规律性进行描述的一种概率分布。

高中数学离散型随机变量的方差知识点总结: 离散型随机变量的方差:刻画随机变量 X 与其均值 EX 的平均偏离程度。

高中数学正态分布知识点总结: 正态分布:是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N(μ,σ2)。

高中数学平均数,方差,标准差知识点总结:平均数,方差,标准差:样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。

高中数学立体几何教学策略分析 第3篇

学生在学习立体几何时存在一个普遍性的难题: 在理解立体几何的示意图方面存在困难. 也就是学生无法根据示意图在脑海中想象出它真正的立体模型. 例如, 在平面示意图中, 明明直线AB和直线CD画出来的样子是相交的, 学生无法理解它们如何在空间上平行.

二、培养空间想象能力

学生在空间想象能力上的困难并不是无法解决的. 教师可以通过各种教学方法帮助学生排除障碍.

1. 模型教学法. 在学习立体几何的时候, 教师带领学生先从简单的几何模型入门. 教师可以携带一些球体、三棱锥、三棱柱等立体模型到教室. 先把它们分别展示, 让学生画出它们的三视图.

例如, 一个圆锥模型的俯视图是圆形, 教师接着让学生利用“斜二侧画法”, 在空间坐标轴将俯视图的斜二侧图形画出来, 就大概变成一个椭圆. 然后把正视图组合上去. 画好后, 让学生把平面示意图和立体模型对照, 斜二侧图形与普通三视图对照, 就能对平面示意和空间想象有更直观的认识.

同样, 在学习直线与平面的关系的时候, 教师可以携带一个正方体模型到教室中. 用粉笔给它的每个顶点标上字母AA1BB1CC1DD1. 在认识线线、线面垂直关系时, 教师可以让学生走上讲台, 自己用食指把直线BB1与直线BC、平面ABCD描画出来, 观察它们是不是相互垂直. 然后把它们与平面示意图相比较.

2. 多媒体教学法. 多媒体教学具有的直观和动态展示一直是立体几何教学的好帮手. 多媒体可以利用透视的方式让学生看到被遮挡的空间内部的形状, 更直观地理解几何体的空间性.

例如, 在学习直线与平面的垂直关系时, 教师可以利用多媒体展示正三棱锥ABCD的空间内部, 也可以利用多媒体从三棱锥的顶点A作底面三角形BCD的垂线. 让学生更清楚地认识到垂直关系的空间形状.

在学习立体几何的表面积的时候, 多媒体教学也能够发挥它的优势. 例如, 一个四棱锥ABCDE, 让学生先自己计算它的表面积. 然后用多媒体将这个立体模型组合体的表面展开, 得到三角形ABC、ACD、ADE、ABE和四边形BCDE, 再分别计算表面积. 这种动态展开的过程就是值得学生效仿的地方.

三、强调几何思维方式

针对学生对立体几何的运用能力不强、综合能力薄弱的局面, 教师可以教会学生掌握一定的几何思维方式去解决立体几何的难题.

1. 向量思维方式. 向量呈现出鲜明的“数形结合”的特性, 它既能够表示一段向量的方向, 又能够记录这段向量的大小. 因此, 学生掌握向量之后, 可以把空间的关系转换成一种代数关系, 通过计算去解决难题, 大大提高了解题效率.

例如, 在三点共线的问题中, 已知A ( 1, 5, 3) , B ( 4, 7, 8) , C ( 2, 9, 6) 三点的空间坐标, 判断它们是否共线. 显然, 用坐标轴画出来太浪费解题时间. 这时候, 就可以运用向量公式λAB = AC去证明三点共线. 求得向量AB为 ( 3, 2, 5) , 向量AC为 ( 1, 4, 3) , 并不成比例, 所以三点不共线.

2. 逆推法的解题思路. 在复杂的几何证明题中, 有时候, 学生采用顺向思维的方式只能得到一些基本的结论, 接着就不知道该朝哪个方向思考. 笔者认为, 如果顺向思维找不到思路, 学生不妨试试逆推的方法.

例如, 要证明平面ABCD垂直于平面DEF的思维可以逆推如下:

1. 如果平面ABCD垂直于平面DEF, 那么可以先证明平面ABCD中的一条直线l和平面DEF垂直.

2. 如果要证明线面垂直, 可以先证明直线l垂直于平面内部的两条相交直线, 例如直线DE和直线DF. 接下来, 学生只需要证明直线与直线的相互垂直即可.

逆推的过程就是根据要求一步一步寻找条件, 最终逆推到已知的条件与结论为止. 这种方法不仅能够帮助学生有条理地解题, 还能够帮助学生疏通各种判定定理.

学生觉得判定定理、推论非常的复杂, 容易混淆, 不是因为它们本身很难理解记忆, 而是它们混在一起, 学生在解题时不知道该怎么使用. 逆推法能够指导学生, 按照逆推的需要使用定理和推论. 同时, 发现自己哪些知识掌握得不够牢固, 从而起到复习巩固的作用. 通过针对性地解决学生的学习难题, 我们可以看到, 立体几何的教学其实并不是无章可循. 关键在于, 教师在设计教学思路之前要认真分析学生的学习现状. 把学生学习阶段遇到的障碍与立体几何本身的特点联系在一起思考, 探究它们产生的原因, 然后找到解决它们的教学方法.

摘要:高中数学的立体几何学习一直是困扰大多数学生的难题.学生在空间想象能力上的薄弱是理解立体几何知识的主要障碍, 复杂的判定定理和推论则降低了他们的解题效率.针对学生的不足, 教师可以采用模型教学、多媒体教学等方式帮助学生增强空间直观认识的能力;同时, 传授学生合理高效的解题思路, 从而实现对立体几何知识的整合运用.

关键词:高中数学,立体几何,方法论

参考文献

[1]金光华.高中数学立体几何教学的认识和体会[J].数学学习与研究, 2013 (5) .

[2]高荣旋.立体几何在高中数学教学过程中的研究[J].新课程 (中旬) , 2013 (5) .

高中数学立体几何教学策略分析 第4篇

【关键词】高中数学;立体几何;策略

高中数学的立体几何学习一直是困扰大多数学生的难题。学生在空间想象能力上的薄弱是理解立体几何知识的主要障碍,复杂的判定定理和推论则降低了他们的解题效率。立体几何是高中数学教学中的重难点,也是高考考察的重点内容。传统关于立体几何的教学内容是从点、线、面、体,既由局部到整体的方式开展的,而《课程标准》中关于几何内容的展开则是由整体到局部的方式,并重点突出度量计算、操作确认、直观感知等探索几何性质的过程。为了让学生对立体几何有更加透彻的了解,进而掌握解决立体几何问题的方法,让立体几何不再“立体”,可以从以下方面入手。

1高中数学立体几何教学中出现的困境

1.1高中生对于几何图形的理解存在障碍

由于高中生在学习立体几何初期,逻辑思维能力和空间想象能力比较差,导致学习过程比较吃力。在几何图形的学习过程中,要学会将几何图形语言转化成文字语言,这也是学习立体几何的关键所在。在立体几何中有时候学生看到的图形并不能真实的反应图形的结构,学生要接受和理解立体几何和真实图形中存在的差异。例如:在一些几何图形中学生看到的平面并不是平行的,但是题目中给出条件却是平行的,这就要求学生在几何图形的理解方面多下功夫,因为几何图形的立体关系并不能完全的反应在平面上,所以学生往往对此觉得很难理解。这类问题在学生作图上也有体现,由于空间想象能力较差,所以很难形成对于几何图形的透彻理解。

1.2高中生对立体几何概念理解不透彻

高中生学习压力较大,形成一种机械式的学习方式,对于概念一般采用死记硬背的学习方式,并不懂得方法的理解。其实学好立体几何,概念理解也相当的重要。很少有学生对几何概念的真正涵义进行深入挖掘。所以学生在运用理论知识的时候并没有理解其真正的涵义,导致几何证明的过程中不知道该如何运用定理和公式。

1.3教师的教学手段和形式较为单一

在立体几何的学习过程中单靠口授的教学方式很难帮助学生理解抽象的几何知识。立体几何对于逻辑思维和空间想象能力的要求比较高,传统的教学形式很难让学生理解课本概念,影响了教学的生动性和启发性。单一的教学形式吸引不了学生的注意力,不利于活跃课堂气氛和激发学生学习的积极性。学生对于课堂内容提不起兴趣,也就导致了教学效率和学生学习效率的下降。

2利用多媒体辅助立体几何教学的重要性

2.1有助于提高学生的学习兴趣和教学水平

高中生的数学基础还是比较薄弱的,理性的认识事物的能力比较低,认识事物普遍以感性、直观的角度出发。因此,高中生在学习立体几何这一抽象并且要求逻辑思维能力很强的学科时,往往会遇到很大的困难,学习过程中提不起较大的兴趣。这就需要教师从教学手段上弥补这一缺陷,利用现代教学工具,将学生从枯燥、乏味的课堂中带出来,用生动形象的动态画面将数学原理呈现在学生的面前,提高学生学习兴趣的同时还能够让学生真正的懂得数学原理的推论、来源,从而对数学概念有更加深刻的理解。一改学生死记硬背数学原理的学习方法,使学生在真正使用数学原理的时候不再不知所措。通过这种方式的学习,学生可以通过多媒体画面对立体几何的各个角度进行观察,提高学生的注意力和学习兴趣。讲多媒体运用到数学教学过程中,还能够改变传统教学课堂沉闷、无趣的状态,提高教学水平和教学质量。

2.2多媒体的应用,提高学生解决实际问题的能力

传统教学中,知识单一教师对学生进行知识灌输,将课本上的理论知识教给学生完成教学任务。传统教学中并没能提高学生在生活中发现数学、学习数学的能力。教学中不能拉近立体几何和学生之间的距离,使学生学习中产生恐惧心理,不仅影响学生的学习成绩还影响学生的心理健康。利用多媒体教学,教师可以将生活中的实例导入课堂教学中来,拉进学生和数学之间的距离,利用多媒体教学将抽象的数学问题转化成生活有趣的事情,在展示立体几何图形之间的关系的时候,可以利用多媒体将这些图形的位置关系具体形象的展现出来。例如:在学习面与面的关系时,可以利用多媒体展示教室中墙与墙之间的位置关系,让学生感觉到立体几何就在身边。教师利用多媒体技术教学,能让学生真实的感受数学思想、数学方法和数学的魅力,还能够培养学生运用数学知识解决实际问题的能力,提高学生的素质。

2.3利用多媒体,培养学生主动学习和获取信息的能力

在教学过程中,教师可以对班级进行分组,在学习过程中根据多媒体展示的内容,进行小组之间的讨论、交流,让学生通过小组之间的交流学习体会课本中原理的来源。让学生通过多媒体演示,从中获取所需信息,自主进行推理研究,这样不仅能够提高学生自主学习的能力,还能够帮助学生通过自身探索研究更好的理解数学概念,对立体几何有更加深入的理解。

3注重情感体验,使学生形成积极地态度和价值观

3.1探究式学习,培养学生的创新精神

高中生正是出于探索研究欲望较为强烈的一个年龄阶段,教师应该充分利用这一特点,引导学生成为立体几何的研究者和探索者。教师可以通过布置一些作图、观察、猜想等方面的作业来让学生在研究几何图形的过程中获得成就感,在探索过程中培养创新精神。学生在自主进行探究的过程中,能够增强自身探索的好奇心,激发出潜在的能力,形成创新意识。在学习柱体、椎体、球体体积公式的时候,教师可以在介绍完柱体体积公式的推导后,可以让学生进行归纳猜想,想办法进行验证,让学生处于一种探索知识的兴奋状态,发掘学生的创新意识。

3.2让学生体验成功,体会到立体几何之美

在立体几何的学习过程中教师要定期的对学生的学习进行评价,合理、科学的评价不仅体现了对学生学习的关注还能够让学生从评价中获得满足感,体验成功的感觉,更加有助于学生接下来的学习。让学生充分的感受到自身是有价值、有能力学好立体几何的,从而坚持不懈的完成学习任务。只有受到肯定,轻松愉快的学习才能发现立体几何的美。

总之,教师在立体几何教学的过程中,要特别注意学生实践动手能力和空间想象能力的培养。鉴于高中立体几何所涉及的内容广泛、复杂程度大、并且较为抽象,这就要求数学教师在教学实践活动中应该不断的探索新的教学方法,以更加适应学生对于立体几何知识的学习。此外,教师不能盲目的、片面的教学,而应该根据教学大纲的要求和学生理解、掌握知识的熟练程度来进行安排教学任务和进度,这样才会更加有利于学生对于立体几何知识的掌握。

参考文献:

[1]俞求是.高中数学教材试验研究概述和分析[J].中学教研(数学),2013(3):1-8.

[2]骆科敏.谈谈高中数学立体几何教学的体会[J].读与写(教育教学刊),2009(5):115.

高中数学立体几何总结 第5篇

第一章空间几何体

1.1柱、锥、台、球的结构特征

1.2空间几何体的三视图和直观图三视图:

正视图:从前往后侧视图:从左往右俯视图:从上往下 2 画三视图的原则:

长对齐、高对齐、宽相等

3直观图:斜二测画法

4斜二测画法的步骤:

(1).平行于坐标轴的线依然平行于坐标轴;

(2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;

(3).画法要写好。用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图

1.3 空间几何体的表面积与体积

(一)空间几何体的表面积

1棱柱、棱锥的表面积: 各个面面积之和圆柱的表面积Srl2  r23 圆锥的表面积S2 圆台的表面积Srlr2 rlr2RlR25 球的表面积S4R2

(二)空间几何体的体积

1VS底h2锥体的体积VS底h 3

高中数学论文立体几何 第6篇

一、上好第一堂课,激发学生学习《立体几何》这门课的兴趣

浓厚的学习兴趣不仅可以使学生积极主动地从事学习活动,而且学习起来还会心情愉快,能够做到全神贯注,长期坚持从而形成一种终身的学习习惯。另外,学生在学习立体几何之前,对立体几何普遍有一种畏惧心理。

所以立体几何的第一堂课是否能抓住学生,调动学生的学习积极性,激发学生学习立体几何的兴趣,非常关键。

二、帮助学生建立空间概念

学生由于受学平面几何的思维定势的影响,在学习立体几何时,要建立起空间概念,有一定的困难,只有尽早解决这个问题。才能学好立体几何。

1.识图与画图

在开始学习立体几何时,要让学生特别注意空间图形在平面内的画法,切不可把虚线再当作平面图形中的辅助线,要把平面图形中的角、线段与空间实例相对照。

2.亲自动手,制作模型

在解决有些问题时,可以把某些元素用实物来表示。对于一些折叠图形问题,学生不妨动手自己折一折,观察分析位置关系的变化,这样就容易看清元素间的位置关系。

三、培养学生空间想象的能力

在立体几何教学中,空间想象能力是重要的数学能力之一,也是一种基本的数学能力。它强调对图形的认识、理解和应用,既会用图形表现空间形体,又会由图形想象出直观的形象,立体几何承担着培养学生空间想象能力的独特功能。

1.教会学生看空间几何体

立体几何的概念教学要从实例引入,对图形的观察、分析来抓住它们的本质特征,抽象出数学概念。

2.重视画图基本功的训练

画出正确图形,是学生解决立体几何问题的前提和基础,画图基本功的训练,应贯穿在立体几何教学的全过程。

(1)教师利用教具、实物,让学生观察,分析抽象出概念后,然后画出相应概念的直观图。

(2)边说边画,让学生看到教师画图的过程,或者让学生在练习本上与教师同步绘制,那种把图形事先画在小黑板上的作法,在教学很长一段时间内是不宜使用的。

(3)让学生把教材中的示范图形,储存在头脑中。

四、证明题的证题思路

立体几何中,证明题占有很大的比例,即使在计算题中,也需要先通过证明以确定元素间的位置关系,然后再进行计算。所以尽快找到证题思路,是解决立体几何题的关键。

1.掌握证题必备的知识

首先掌握线线、线面平行、垂直的判定定理与性质定理本身,对定理本身揭示的内涵有深刻的理解,能熟练画出图形及写出定理的题设、结论。在这些基础上,还应掌握定理的结构及内在的联系。

2.分析证题思路的“十二字令:看结论、想判定;看条件,定取舍”

看结论:指的是命题欲证结论是哪一种结论,是线线平行还是线面垂直。

想判定:指的是依据结论,思考证明该结论的方法有哪些。

看条件,定取舍:指的是证明结论的方法有多种,要根据题目的具体条件来决定选用何种判定定理或性质定理。

3.走好证题起始第一步

一个复杂的命题,其证明过程一般要经过从低维到高维的渐进过程。即从线线关系推证出线面关系,再从线面关系推出面面关系。

五、坚持转化思想

最明显的是空间的三种角:异面直线所成的角、斜线和平面所成的角、二面角的度量,都是转化为平面几何中的角来解决。另外,定理的构成明显地显示出“低维”与“高维”、“简单”与“复杂”的转化。如判定定理的构成,遵循线线到线面再到面面的原则。逐步从简到繁,而性质定理的构成,则遵循面面到线面再到线线的原则,它显示出在整体认识的基础上,进一步研究它的局部与个体。

高中数学论文立体几何篇三:立体几何教学中数学思想的培养

摘 要:本文结合具体例子,从转化思想、分类思想、割补思想三个方面论述了培养学生数学思想的方法。

关键词:立体几何;数学思想;转化;分类;割补

数学教学中有两条线,一条是明线,即数学知识;一条是暗线,即数学思想。传统教学重“明”轻“暗”,即只重视知识的传授,轻视数学思想的培养。这种教学上的弊端,致使学生听得懂做不出,这在立体几何教学中尤为明显,所以在立体几何教学中重视渗透数学思想,是突破学习障碍的关键,笔者认为立体几何教学中应着重注意渗透以下几种数学思想。

一、转化思想

在课堂教学中,有意识地、不失时机地渗透分类思想,不但可将复杂问题分解为简单问题,还可提高学生周密地思考问题、完整地解答问题的能力。

三、割补思想

割补思想是立体几何中一种重要的思想方法,在求解几何体体积问题时应用更为广泛。割补法重在割与补,恰当地割补空间图形往往使问题明朗化,化繁为简、化暗为明、化难为易,尤其遇有运用常规思考方法不易达到目的的题目,割补法往往显示出独到的功效。

割补方法是很简单、很直观的思想方法,但作用很大。教学中渗透割补思想,既可开阔学生的解题思路,也可达到事半功倍的效果,还可将不可知的数学问题分割成具体简单的问题。

高中数学立体几何解题方法 第7篇

简单地说,《考试说明》就是对考什么、考多难、怎样考这三个问题的具体规定和解说。《教学大纲》则是编写教科书和进行教学的主要依据,也是检查和评定学生学业成绩、衡量教师教学质量的重要标准。我们可以结合上一年的高考数学评价报告,对《考试说明》进行横向和纵向的分析,发现命题的变化规律。

2学习计划

弄清问题。也就是明白“求证题”的已知是什么?条件是什么?未知是什么?结论是什么?也就是我们常说的审题。

拟定计划。找出已知与未知的直接或者间接的联系。在弄清题意的基础上,从中捕捉有用的信息,并及时提取记忆网络中的有关信息,再将两组信息资源作出合乎逻辑的有效组合,从而构思出一个成功的计划。即是我们常说的思考。

执行计划。以简明、准确、有序的数学语言和数学符号将解题思路表述出来,同时验证解答的合理性。即我们所说的解答。回顾。对所得的结论进行验证,对解题方法进行总结。

3运算技巧

以“错”纠错,查漏补缺:这里说的“错”,是指把平时做作业中的错误收集起来。高三复习,各类试题要做几十套,甚至上百套。如果平时做题出错较多,就只需在试卷上把错题做上标记,在旁边写上评析,然后把试卷保存好,每过一段时间,就把“错题笔记”或标记错题的试卷看一看。在看参考书时,也可以把精彩之处或做错的题目做上标记,以后再看这本书时就会有所侧重。查漏补缺的过程就是反思的过程。

以本为本,把握通性通法:近几年高考数学试题坚持新题不难、难题不怪的命题方向,强调“注意通性通法,淡化特殊技巧”。就是说高考最重视的是具有普遍意义的方法和相关的知识。例如,将直线方程代入圆锥曲线方程,整理成一元二次方程,再利用根的判别式、求根方式、韦达定理、两点间距离公式等可以编制出很多精彩的试题。尽管复习时间紧张,但我们仍然要注意回归课本。回归课本,不是要强记题型、死背结论,而是要抓纲悟本,对着课本目录回忆和梳理知识,把重点放在掌握例题涵盖的知识及解题方法上,选择一些针对性极强的题目进行强化训练、复习才有实效。

4几何公式

1.把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

3.正n边形的每个内角都等于(n-2)180°/n

4.正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

5.正n边形的面积sn=pnrn/2 p表示正n边形的周长

6.正三角形面积√3a/4 a表示边长

7.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k(n-2)180°/n=360°化为(n-2)(k-2)=4

8.弧长计算公式:l=nπr/180

9.扇形面积公式:s扇形=nπr2/360=lr/2

高中数学中的立体几何解题技巧 第8篇

1、巧作辅助图形, 采用特殊化法

例:求棱长为a的正四面体A-BCD的体积和外接球的半径。

解析:由于正四面体的六条棱相等, 易联想到正方体的六个面的对角线相等。于是构作辅助图形, 即将正四面体补成正方体DE.由AB=a, 易得正方体棱长AE=姨22a, VA-BCD=V正方体-4VC-ABE=姨122a3由正方体是球的内接正方体, 易知外接球半径为姨46a.

例:在三棱锥P—ABC中, 三条棱PA, PB, PC两两互相垂直。设D为底面ABC内任一点, 若PD与平面PAB, 面PBC所成角分别为30°, 45°.求PD与平面PAC所成角的正切值。

解析:本题若直接求解非常冗繁, 但若考虑到题设条件, 则以PD所在直线为对角线, PA、PB、PC所在线段为三条棱构作辅助图形长方体, 使问题特殊化:即求该长方体的对角线PM与侧面PAC所成角的正切值。设PD与侧面PAB, PBC, PAC所成角分别为α, β, γ.则依据长方体性质有:sin2α+sin2β+sin2γ=1.由条件知α=30°, β=45°.∴sin2γ=1- (sin2α+sin2β) =41.∴为所求。

评注:通过构造辅助图形, 使原命题特殊化来解答某些立体几何问题, 不但可以简化解题过程, 优化问题解答, 而且能开拓解题的思维视野, 使问题解答独辟蹊径。

2、寻找主要矛盾, 采用“隔离法”

例:二面角α-l-β为30°, 点A在平面α内, 点A到直线l的距离为2, 点A在平面β内的射影为B, B在平面α内射影为点A′, 点A′在面β内射影为B′.求点B′到棱l的距离。

解析:本题由于条件太复杂, 干扰因素太多, 不便于分析。现依据图形抽出主要对象, 便有如下解法:∵AB⊥β, AA′⊥α设由相交直线AB、AA′确定的平面交l于M, 则平面ABM⊥α面ABM⊥β.易证∠ABM为二面角α-l-β的平面角。把△ABM隔离出来:.

评注:在立体几何解题 (证明) 时, 紧抓主要对象, 把主要对象从复杂的线、面、体等关系中隔离出来, 单独研究。可以直观、方便的使问题获解 (证明) , 避免因受图中太多辅助线 (或面) 干扰而扰乱视角。

3、变动图形, 巧用运动观点解题

例:二面角α-a-β的平面角为120°, 在平面α内, AB⊥α于B, AB=2, 在平面β内, CD⊥β于D, CD=3, BD=1, M是棱a上一动点, 则AM+CM的最小值为多少?

解析:现将β平面绕a棱旋转到和α平面位于同一平面的位置, C点落在C′位置。连接AC′交BD于M1, 当点M1与M点重合时, AM+CM最小。由△C′DM~△ABM, 易求得AM+CM最小值为.

例:已知一个三棱锥的5条棱长均为1, 则另一条棱长的取值范围是.

解析:由条件设AB=AC=BC=SB=SC=1, 现把△SBC以BC为轴进行旋转, 在△SBC的运动过程中, 各边长度均不变, 当点S靠近A点时, SA→0;当点S靠近点S′时, SA→姨3.所以SA长度的取值范围为 (0, 姨3) .但需注意点S不能运动到面ABC内, 否则就不能构成三棱锥。

评注:当我们求解一些立体几何中的最值、范围等问题时, 如果能恰当地变换图形位置, 用运动的观点考察问题, 常能收到事倍功半的效果。

4、“设而不求”, 简化运算

例:已知正四棱锥S-ABCD, 用平行于底面的平面截得面A1B1C1D1所得多面体的上、下底面的面积分别为Q1Q2.侧面面积为P, 求它的一个对角面面积。

解析:易证所得多面体的对角面为等腰梯形且上、下底的长可以由上、下底面积解得, 高即为此多面体的高。如果直接求解有关元素, 运算过程太复杂。现采用设而不求的方法:设对角面面积为S, 多面体上、下底面边长为a, b, 高为h, 斜高为h′则

评注:对有些立体几何问题, 一般的常规方法在求解时会出现一些不是非有不可的步骤和环节。此时若把握全局, 明确问题与条件间的关系, 巧妙避开“非求部分”, 采用“设而不求”另辟蹊径, 可以简化解题过程。这是一种重要的思想方法。

5、以“形”助“数”, 数形结合方法

例:正△ABC的边长为a, 沿BC的平行线PQ折叠, 使平面A′PQ⊥面BCQP, 设点A′到直线PQ的距离为x. (1) 试求x为何值时, AB取得最小值。 (2) 设∠BA′C=θ, 求角θ的最大值。

解析: (1) 作AD⊥BC于D, 设AD∩PQ=E, ∵BC‖PQ.

∴AE⊥PQ.折起后A′E⊥OP.面A′PQ⊥面PBCQ, ∴A′E⊥面PBCQ, 连接EB, 则∠AE′B=90°, 且A′E=AE=x, ∴

设A′B=d, 则∵0<x<姨32a, ∴当∴此时PQ为△ABC的中位线。 (2) 易得A′C=A′B=d.在△A′BC中, .当d2取最小值时, 即d2=58a2时, cosθ取最小值15.而θ是△A′BC的内角, ∴0<θ<π.又∵y=cosx在 (0, π) 上是减函数, ∴Qmax=arccos15, 此时, .

高中数学立体几何题答题技巧刍议 第9篇

【关键词】立体三维感  几何基础  建坐标系  认真计算

中图分类号:G4     文献标识码:A DOI:10.3969/j.issn.1672-0407.2015.05.181

数学作为高考中最难攻克的一道难关,出的题目往往是复杂而有难度,让大部分高中生提起数学都头疼不已,在解答数学题的时候变得不自信。尤其是需要立体三维思想的空间几何类题目,学生更是闻之色变,觉得这类题目的难度太大,根本没有自信得到高分甚至满分。

其实不然,高中数学的立体几何题虽然难度大,但其实它所包含的知识点是学生都学过的,知识点不难,只是知识点的整合和应用对于学生来说比较困难。其实,只要学生能够抓住立体几何类题目的一般答题规律和答题技巧,拿到此类题目的高分应该算是轻而易举的。

一、培养立体三维感,抓住立体几何图的要害

立体几何题不同于平面几何,它对学生三维立体感的要求更高。学生如果没有养成很好的三维立体感,就很难看懂题目中的立体几何图,然而题目中的立体几何图往往是这道题的重点所在。

学生对立体几何图往往感到很头疼,然而借助培养立体三维感来读懂立体几何图的方法并不难,只需要学生多加练习,多读几个立体几何图,从头到尾分析出这个立体几何图的空间结构,并且养成能够在脑中形成一个三维的立体结构图。就是把题目上的立体几何图还原到脑中,这样的话,题目中立体几何图的分析就变得简单了。

老师还需要多带领学生读图,帮助学生理解立体几何图的立体结构,最好能做到全面分析立体图,不要就题论题。大部分老师都会在遇到某个立体几何题时,只根据题目来分析题目,并不为学生过多的分析与之相关的立体几何图题,这种做法并不能让学生完全掌握分析立体几何图的步骤和方法。因此,老师在遇到立体几何类题目的时候,一定要带领学生从头分析,把握住分析立体几何图的要点和步骤,慢慢跟学生讲解,之后让学生独立解答立体几何题,教师要让学生能够养成独立分析立体几何图的习惯。

对于立体几何图的分析,教师要重视学生三维立体感的培养。老师要着重培养学生的空间想象能力和严谨的思维逻辑顺序,按照分析立体几何图的一般步骤,循序渐进,最终要学生能熟练的掌握立体几何图的分析方法。

二、打好几何基础,熟记几何知识点和常用结论

无论是初中数学的几何题还是高中数学的几何题,都离不开公理定律的应用。所有的几何题都是用学过的公式定理和常用结论堆砌而成的,只是知识点的考察形式和出题的方向不同。学生要想学好高中数学的几何知识,拿下高中数学几何类题目的高分,首先,就要打好几何基础,熟记课本上总结出的几何知识点和常用结论。

老师可以采取类比平面几何知识点的方式,帮助学生进行几何知识点的梳理和记忆。平面几何是立体几何的基础,所有的立体几何知识点都是在平面几何的基础上得出来的。平面几何是学生在初中时就已经接触过的知识点,因此老师可以从学生较为熟悉的平面几何的知识点出发,类比平面几何,推出立体几何的相关知识点。

例如立体几何题中常常会出现证明直线与平面平行的题,这时老师可以根据学生在初中学过的平面几何知识中的直线与直线平行,得出直线与直线平行的条件是直线与直线之间没有交点,进而推出直线与平面平行的条件应该是直线与平面没有交点。因此,老师可以在此基础上,推出直线与平面平行的条件就是已知直线与已知平面内的任何一条直线平行。

老师可以多用类比法,层层递进,推出最终的立体几何知识点,帮助学生理解和记忆立体几何的基础知识。例如平面与平面平行的判定定理的推断是在直线与平面平行的基础上推出的,平面与平面平行的判定定理是已知平面内的两条相交直线都平行于同一平面,而两条相交直线与另一平面平行的判定就需要用到直线与平面平行的判定定理了。

对于立体几何类题目,还有一部分的知识点学生充分掌握,那就是向量的有关知识。向量部分与建立坐标系进行求解的过程息息相关,例如利用向量判断直线与直线垂直与平行的方法,学生掌握住这些规律之后才能进行下一步的求解,解题才会有明确的方向。

因此,学生要牢记立体几何的基础知识点,因为立体几何类的题目大部分都是以证明题的形式存在,而证明题的答题步骤和方法是建立在几何基础知识的基础上的。

三、建立正确坐标系,掌握相关公式,认真进行有关数据的计算

立体几何类题目的解答在一般情况下需要借助坐标系的建立来完成,因此,学生要熟悉正确的坐标系的建立方法。立体几何图的坐标系不同于平面几何,需要的坐标系是三维坐标系,由x轴,y轴和z轴组成。

我们高中阶段使用的一般都是右手系坐标。老师需要给学生讲明白右手系的建立方法,即x轴、y轴和z轴的位置的确立方式。很多学生在坐标系的建立上出现问题,大多数是因为不知道右手坐标系的建立方法,往往是根据自己的主观判断来建立坐标系。

在建立正确的坐标系之后,就需要学生能够运用自己的三维想象能力,确定每一个关键点的坐标位置。很多学生可能费了九牛二虎之力在脑中想象出了立体几何的三维结构,也建立出了正确的坐标系,但是却在立体几何各个关键点的坐标判定上出错了,一旦有一个点或其他关键点的坐标判断错误,就会导致整个计算过程的错误。因此,老师要教育学生要始终保持严密的思维模式,不能松懈。

接下来,学生需要将题目所要求的部分与自己熟练掌握的向量知识相结合,运用向量知识分析出题目所需要的解题方向和思路。然后就要进行计算了,立体几何类题目不同于普通的代数题,它的数值往往是分数和未知数,它的计算对做题人的细心程度有很高的要求。因此老师要要求学生在计算的过程中保持认真的态度,决不能松懈,不能大意。

例如,题目中要求证明空间内的两条直线平行,学生要严格按照正确的步骤,建立正确的坐标系,确定出准确的已知点坐标,然后运用向量知识将两条直线的几何关系转换成代数知识进行计算,最终得出结论。

高中数学知识点--立体几何 第10篇

一 逐渐提高逻辑论证能力

立体几何的证明是数学学科中任一分之也替代不了的。因此,历年高考中都有立体几何论证的考察。论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法(“推出法”)形式写出。

二 立足课本,夯实基础

直线和平面这些内容,是立体几何的基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。例如:三垂线定理。定理的内容都很简单,就是线与线,线与面,面与面之间的关系的阐述。但定理的证明在初学的时候一般都很复杂,甚至很抽象。掌握好定理有以下三点好处:

(1)深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。(2)培养空间想象力。

(3)得出一些解题方面的启示。

在学习这些内容的时候,可以用笔、直尺、书之类的东西搭出一个图形的框架,用以帮助提高空间想象力。对后面的学习也打下了很好的基础。

三 “转化”思想的应用

我个人觉得,解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:

1.两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影所成的角。

2.异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转化为线面距离,再转化为点面距离,点面距离又可转化为点线距离。

3.面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。

4.三垂线定理可以把平面内的两条直线垂直转化为空间的两条直线垂直,而三垂线逆定理可以把空间的两条直线垂直转化为平面内的两条直线垂直。

以上这些都是数学思想中转化思想的应用,通过转化可以使问题得以大大简化。

四 培养空间想象力

为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。例如:正方体或长方体。在正方体中寻找线与线、线与面、面与面之间的关系。通过模型中的点、线、面之间的位臵关系的观察,逐步培养自己对空间图形的想象能力和识别能力。其次,要培养自己的画图能力。可以从简单的图形(如:直线和平面)、简单的几何体(如:正方体)开始画起。最后要做的就是树立起立体观念,做到能想象出空间图形并把它画在一个平面(如:纸、黑板)上,还要能根据画在平面上的“立体”图形,想象出原来空间图形的真实形状。空间想象力并不是漫无边际的胡思乱想,而是以提设为根据,以几何体为依托,这样就会给空间想象力插上翱翔的翅膀。

五 总结规律,规范训练

立体几何解题过程中,常有明显的规律性。例如:求角先定平面角、三角形去解决,正余弦定理、三角定义常用,若是余弦值为负值,异面、线面取锐角。对距离可归纳为:距离多是垂线段,放到三角形中去计算,经常用正余弦定理、勾股定理,若是垂线难做出,用等积等高来转换。不断总结,才能不断高。还要注重规范训练,高考中反映的这方面的问题十分严重,不少考生对作、证、求三个环节交待不清,表达不够规范、严谨,因果关系不充分,图形中各元素关系理解错误,符号语言不会运用等。这就要求我们在平时养成良好的答题习惯,具体来讲就是按课本上例题的答题格式、步骤、推理过程等一步步把题目演算出来。答题的规范性在数学的每一部分考试中都很重要,在立体几何中尤为重要,因为它更注重逻辑推理。对于即将参加高考的同学来说,考试的每一分都是重要的,在“按步给分”的原则下,从平时的每一道题开始培养这种规范性的好处是很明显的,而且很多情况下,本来很难答出来的题,一步步写下来,思维也逐渐打开了。六 典型结论的应用

高中数学立体几何知识点 第11篇

1.空间几何体的三视图:

定义:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右);俯视图(从上向下)。

注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽带;侧视图反映了物体的高度和宽带。

球的三视图都是圆;长方体的三视图都是矩形。

2.空间几何体的直观图斜二测画法

(1)在已知图形中取互相垂直的x轴和y轴,两轴相较于点O。画直观图时,把它们画成对应的x’轴和y’轴,两轴交于点O’,且使

(2)已知图形中平行于x轴或y轴的线段,在直观图中分别画呈平行于x’轴或y’轴的线段。

(3)已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度为原来的一半。

高中数学立体几何总结 第12篇

立体几何在历年的高考中有两到三道小题,必有一道大题。虽然分值比重不是特别大,但是起着举足轻重的作用。下面就如何学好立体几何谈几点建议。

一 培养空间想象力

为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。例如:正方体或长方体。在正方体中寻找线与线、线与面、面与面之间的关系。通过模型中的点、线、面之间的位置关系的观察,逐步培养自己对空间图形的想象能力和识别能力。其次,要培养自己的画图能力。可以从简单的图形(如:直线和平面)、简单的几何体(如:正方体)开始画起。最后要做的就是树立起立体观念,做到能想象出空间图形并把它画在一个平面(如:纸、黑板)上,还要能根据画在平面上的“立体”图形,想象出原来空间图形的真实形状。空间想象力并不是漫无边际的胡思乱想,而是以提设为根据,以几何体为依托,这样就会给空间想象力插上翱翔的翅膀。

二立足课本,夯实基础

直线和平面这些内容,是立体几何的基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。例如:三垂线定理。定理的内容都很简单,就是线与线,线与面,面与面之间的关系的阐述。但定理的证明在出学的时候一般都很复杂,甚至很抽象。掌握好定理有以下三点好处:

(1)培养空间想象力。

(2)得出一些解题方面的启示。

(3)深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。

在学习这些内容的时候,可以用笔、直尺、书之类的东西搭出一个图形的框架,用以帮助提高空间想象力。对后面的学习也打下了很好的基础。

三总结规律,规范训练

立体几何解题过程中,常有明显的规律性。例如:求角先定平面角、三角形去解决,正余弦定理、三角定义常用,若是余弦值为负值,异面、线面取锐角。对距离可归纳为:距离多

用心爱心专心

1是垂线段,放到三角形中去计算,经常用正余弦定理、勾股定理,若是垂线难做出,用等积等高来转换。不断总结,才能不断高。

还要注重规范训练,高考中反映的这方面的问题十分严重,不少考生对作、证、求三个环节交待不清,表达不够规范、严谨,因果关系不充分,图形中各元素关系理解错误,符号语言不会运用等。这就要求我们在平时养成良好的答题习惯,具体来讲就是按课本上例题的答题格式、步骤、推理过程等一步步把题目演算出来。答题的规范性在数学的每一部分考试中都很重要,在立体几何中尤为重要,因为它更注重逻辑推理。对于即将参加高考的同学来说,考试的每一分都是重要的,在“按步给分”的原则下,从平时的每一道题开始培养这种规范性的好处是很明显的,而且很多情况下,本来很难答出来的题,一步步写下来,思维也逐渐打开了。

四逐渐提高逻辑论证能力

立体几何的证明是数学学科中任一分之也替代不了的。因此,历年高考中都有立体几何论证的考察。论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法(“推出法”)形式写出

五典型结论的应用

在平时的学习过程中,对于证明过的一些典型命题,可以把其作为结论记下来。利用这些结论可以很快地求出一些运算起来很繁琐的题目,尤其是在求解选择或填空题时更为方便。对于一些解答题虽然不能直接应用这些结论,但其也会帮助我们打开解题思路,进而求解出答案。

我相信,如果在学习过程中做到了以上六点,那么任何题目也会迎刃而解。

六“转化”思想的应用

我个人觉得,解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:

1.两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影所成的角。

2.异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转化为线面距离,再转化为点面距离,点面距离又可转化为点线距离。

用心爱心专心 2

3.面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。

4.三垂线定理可以把平面内的两条直线垂直转化为空间的两条直线垂直,而三垂线逆定理可以把空间的两条直线垂直转化为平面内的两条直线垂直。

以上这些都是数学思想中转化思想的应用,通过转化可以使问题得以大大简化。

相关文章
表演人才范文

表演人才范文

表演人才范文(精选11篇)表演人才 第1篇六七岁至十一二岁是学龄初期, 即相当于儿童接受小学教育的年龄。这一时期少儿的主要行为活动是学...

3
2025-09-20
保安班长月总结

保安班长月总结

保安班长月总结(精选6篇)保安班长月总结 第1篇篇一:保安班长年终总结个人总结光阴似箭日如梭,转眼间半年已经过去。回顾我们保安队在近...

1
2025-09-20
班主任有关工作培训心得

班主任有关工作培训心得

班主任有关工作培训心得(精选15篇)班主任有关工作培训心得 第1篇20**年8月我有幸在市电大参加了“仙桃市第一期小学骨干班主任高级研修班...

1
2025-09-20
部编版一年级四季教案

部编版一年级四季教案

部编版一年级四季教案(精选6篇)部编版一年级四季教案 第1篇《四季》文清路小学 刘明霞教学目标:1、认识 9个生字和言字旁,虫字旁和折...

2
2025-09-20
办公室文秘的岗位职责有哪些

办公室文秘的岗位职责有哪些

办公室文秘的岗位职责有哪些(精选18篇)办公室文秘的岗位职责有哪些 第1篇1、在董事会的领导下主持办公室的全面工作,负责办公室的日常工...

3
2025-09-20
八年级上册第1课鸦片战争

八年级上册第1课鸦片战争

八年级上册第1课鸦片战争(精选12篇)八年级上册第1课鸦片战争 第1篇《鸦片战争》教学设计【教学目标】1、英国向中国走私鸦片及危害;林则...

2
2025-09-20
表面粗糙度测量仪的工作原理

表面粗糙度测量仪的工作原理

表面粗糙度测量仪的工作原理(精选10篇)表面粗糙度测量仪的工作原理 第1篇表面粗糙度测量仪的工作原理分析及其改进方案阳旭东(贵州工业大...

1
2025-09-20
宾馆改造可行性报告

宾馆改造可行性报告

宾馆改造可行性报告(精选8篇)宾馆改造可行性报告 第1篇第一章 总论1.1 项目名称及承办单位项目名称:宝地宾馆改扩建项目 承办单位:...

1
2025-09-20
付费阅读
确认删除?
回到顶部