分数除法的教学反思(精选6篇)
分数除法的教学反思 第1篇
本节课重点是理解分数与除法的关系、带分数与假分数互化。难点还是理解除法与分数的关系,虽然在复习旧知,如:把6米的绳子平均分成两段,每段长多少米?简简单单的复习为探索新知做铺垫,可课件呈现课件呈现把一块蛋糕平均分给2个小朋友,每人能得到几块蛋糕?学生把刚才复习的除法计算的知识进行迁移,很容易能用算式1÷2来计算,有的学生会直接用二分之一表示,我引导:既然都是正确,就说明可以用等于号了。
接着从课本的例子:如果有7块蛋糕,要分给3个小朋友,每个小朋友又能得到多少呢?学生很快就能列式表示,并用分数表示结果。然后让学生观察两个式子,看看分数与除法有什么关系?先让学生同组交流讨论,再全班反馈交流,学生能说出分数和除法有关系,就是说不出所以然,我只好问:这个分子和除法的什么好像相当?总算是把这些关系理清,可学生提出疑问:“能不能说分子等于被除数?”我说不行,只能用“相当”更恰当。
对于假分数化带分数,我从上次作业的一个图形引导,二又八分之六等于八分之二十二,完整一个单位“1”有八份,那么2个单位就是十六加上不完整的6就是22,看来分子除以分母后的商是整数部分,余数是新的分子,反过来是带分数化假分数,可以引导学生从被除数=除数×商+余数,这样学生就很明朗。
特别强调的是:在带分数和假分数互化时,一定要演算,培养演算的习惯是学生学习中不可缺少的。
本节课遗憾的是讲得太多,学生思考的时间少了,虽然学生认真听讲,但不利于学生的探究能力,值得注意。
分数除法的教学反思 第2篇
在现实社会中,教学是我们的任务之一,反思是思考过去的事情,从中总结经验教训。那么应当如何写反思呢?以下是小编帮大家整理的分数与除法的教学反思(通用5篇),希望能够帮助到大家。
分数与除法的教学反思1《分数与除法》是在学生学习了分数的意义基础上进行教学的,通过这节课的教学,目的是让学生在理解了分数的意义基础上,从除法的角度去理解分数的意义,掌握分数与除法的关系,会用分数表示两个数相除的商。
在这节课的教学中,我觉得有以下几方面值得我去思考:
一、在学生用除法的意义理解分数的意义时,能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力较差的学生,在演示说明的时候,叫的学生少,如果能多叫几名同学演示说明,再加上教师的及时点拨,我想这部分学生在理解这一难点时,就会比较容易了。
二、学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异。但说的不是很明白。特别是3个饼合在一起来分学生,每一份是多少快,学生不太理解,在以后的备课过程中,要充分考虑学生的已有知识水平和心理认知特点。
三、小组的全员参与不够。在小组合作进行把3张饼平均分给4个人时,有的小组合作的效果较好,但有的小组有个别同学孤立,不能很好的与人合作,我想,学生在动手操作之前,教师如果能让小组长布置好明确的任务分工,让每个人都有事可做,小组合作的效果就会更好了。
四、在教学设计环节上,学生动手操作的内容过多,使整堂课显得很罗嗦,练习的时间就相对缩短了。在操作这一环节上,我设计了两次动手操作,都是分饼问题,分饼的目的是让学生用除法的意义理解分数的意义,学生分了两次,但还是有的同学理解的不是很透彻,如果只让学生分一次,把这一次的操作活动时间延长一些,汇报演示时让每个类型的学生都有参与展示的机会,我想这样教师就会有充足的时间在学生汇报展示的时候给予指导,使学生真正理解分数的意义。
以上几方面就是我对这节课的一点思考,也是我在以后的教育教学中应该注意的几个方面,相信自己以后在这几方面会做得更好。
分数与除法的教学反思2本节课在学习分数的意义基础上进行教学的。分数的意义是从部分与整体的关系揭示的。分数与除法可以表示两个整数相除(除数不能为0)的商揭示分数的另一方面的意义,以加深和扩展学生对分数意义的理解,同时为学习假分数以及把假分数化为整数或带分数作准备。
成功之处:
夯实分数的意义的.第二种情况。在教学例1时,将除法的意义与分数的意义联系起来。实际上把1个蛋糕平均分给3人,求每人分得几个,就是应用整数除法的意义来列算式,只不过结果是依据分数的意义得出来的。而在例2的教学中,首先通过学生把3块饼平均分给4个小朋友,每个小朋友分几块,也是应用平均分的除法意义列出算式,然后让学生实际分一分,学生通过动手操作得出三种不同的分法:一是把第1个饼平均分成4份,每个小朋友分得1/4块,再把第2、3个饼同样均分,最后每人分得3个1/4块,把它们拼在一起,得到1个饼的3/4;第二种是把3个饼摞在一起,平均分成4份,每个小朋友分得3个饼的1/4,拼在一起就是1个饼的3/4;第三种是把每个饼平均分成4份,一共分了12份,把12份平均分给4个小朋友,每个小朋友分3份,也就是3个1/4份,即3/4块。通过两个例题的教学,明确列式与整数除法的意义相同,在计算时依据被除数÷除数=被除数/除数,不足之处:
学生在求一个数是另一个数的几分之几时,列式总是出错,被除数和除数容易颠倒。
改进措施:
1.加强求一个数是另一个数的几分之几的列式训练。
2.在教学中还要加强分数意义的两种情况的对比,让学生明确分数不仅表示部分与整体之间的关系,还表示实际数量。
分数与除法的教学反思3教学分数与除法的关系时学生很是配合,仿佛早已掌握了所有知识点,对于我的提问对答如流,甚至当我给出例题3÷4时,全班不假思索不屑一顾的脱口而出四分之三,而当我问出为什么时,他们甚至不愿意去思考,仿佛我问的这个“为什么”简直就是废话中的废话。整个班级躁动不安,是清明假期来临的缘故吧。看着即将发怒的老师,孩子们安静下来一张张稚气的脸望着我,眼神中带有一丝丝惊恐。我突然想笑,这不就是儿时的自己吗?我沉住气笑着说:明天放假了,看来大家很是兴奋吧!孩子们长舒一口气掩面而笑。我接着说:站好最后一班岗的战士才是真正的好战士。同学们心领会神的坐得端端正正。“授人以鱼,不如授人以渔。”我接着说,“大家都知道3除以4得四分之三,那3除以4为什么等于四分之三呢?四分之三就相当于鱼。而老师想让你得到的是渔,你觉得呢?”果然还是聪明的孩子,轻轻一拨,大部分开始思考了,我和孩子们开始了我铺好的探究之旅。
一、通过操作,感悟算理。
我叫学生拿出课前准备好的三个圆,让学生在小组内用自己喜欢的方式来验证对3除以4这一结果的猜想。孩子们或静下心来仔细思考;或把自己手里的圆形折一折、剪一剪;或在本子上画一画、写一写;或同桌小声交流自己的想法。我把想法不同的孩子叫上讲台,在黑板上画出自己的思考过程。并让他们一一介绍。通过学生的操作,得出两种分法,方法
(一):把三个圆一个一个分,每次得四分之一,分3次,就得3个四分之一,就是四分之三张饼。
方法(二):把三个圆叠起来,平均分成4份,得到3张饼的四分之一,也是3个四分之一,相当于一张饼的四分之三。
不管怎样分,都可以验证3÷4用分数四分之三来表示结果。还有学生想出了方法(三):3除以4得0.75,0.75化成分数也是四分之三。
通过学生自主操作让其充分理解其中的算理。二、再次说理,悟出关系。
在学生初步感知分数与除法的关系时,我有意识地把例题改了一下,把3块饼平均分给5个人,把4块饼平均分给7个人,让学生通过画图或说理,快速的算出它们的商。让学生亲身体会到计算两个整数相除,除不尽或商里面有小数时就用分数表示他们的商,这样既简便又快捷,而且不容易出错。
通过学生自主生成的三道算式,让学生去发现除法与分数之间到底有怎样的关系?并把自己的想法和同桌互相交流。最终学生小结出:除法中的被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数线。并明确:除法是一种运算,而分数是一种数。
三、对比练习,深化知识。
出示:
把三块饼平均分给7个小朋友,每人分得这些饼的几分之几。
把三块饼平均分给7个小朋友,每人分得几分之几块。
让学生观察这两道题目的区别,一道带单位,一道不带单位。第一道是根据分数的意义把单位“1”平均分成几份,每份就是单位“1”的几分之一,是份数与单位“1”的关系,在数学中我们称为分率,分率不带单位。第二题带单位则表示的是一个具体的数量,则用总数量除以平均分的份数得到每份的具体数量,得数的单位跟被除数的单位一致。明确:分数有两种含义,一种表示与单位1 的关系即分率(不带单位),一种则表示具体的数量(要带单位),为以后学习分数和百分数应用题做好铺垫。
在教学过程中,让学生在自主参与,动手操作、观察比较、交流汇报的基础上去推理和概括,能达到事半功倍的效果。我一直崇尚让学生自己去发现,自己去总结,让学生能学习探究问题的方法,而不是单纯的教授一些解题技巧,因为我知道授生以“渔”永远比授生以“鱼”来的重要的多!
分数与除法的教学反思4本节课重点是理解分数与除法的关系、带分数与假分数互化。难点还是理解除法与分数的关系,虽然在复习旧知,如:把6米的绳子平均分成两段,每段长多少米?简简单单的复习为探索新知做铺垫,可课件呈现课件呈现把一块蛋糕平均分给2个小朋友,每人能得到几块蛋糕?学生把刚才复习的除法计算的知识进行迁移,很容易能用算式1÷2来计算,有的学生会直接用二分之一表示,我引导:既然都是正确,就说明可以用等于号了。
接着从课本的例子:如果有7块蛋糕,要分给3个小朋友,每个小朋友又能得到多少呢?学生很快就能列式表示,并用分数表示结果。然后让学生观察两个式子,看看分数与除法有什么关系?先让学生同组交流讨论,再全班反馈交流,学生能说出分数和除法有关系,就是说不出所以然,我只好问:这个分子和除法的什么好像相当?总算是把这些关系理清,可学生提出疑问:“能不能说分子等于被除数?”我说不行,只能用“相当”更恰当。
对于假分数化带分数,我从上次作业的一个图形引导,二又八分之六等于八分之二十二,完整一个单位“1”有八份,那么2个单位就是十六加上不完整的6就是22,看来分子除以分母后的商是整数部分,余数是新的分子,反过来是带分数化假分数,可以引导学生从被除数=除数×商+余数,这样学生就很明朗。
特别强调的是:在带分数和假分数互化时,一定要演算,培养演算的习惯是学生学习中不可缺少的。
本节课遗憾的是讲得太多,学生思考的时间少了,虽然学生认真听讲,但不利于学生的探究能力,值得注意。
分数与除法的教学反思5这节课的重点是理解分数与除法的关系,难点是用除法意义理解分数意义。让学生通过本节课的学习,初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示商。能运用分数与除法的关系,解决一些简单的问题。
这节课的内容还是比较简单的。如果单纯的教学它们的关系:一个分数的分子相当于除法中的被除数,分母相当于除数。学生一定学得很扎实,但是这样一来3÷4=的算理往往被忽视。因此我把重点放在例题2,3÷4=xx(块)的探究上。
在教学中我引导学生用3张圆形纸片动手分一分,并让学生思考把3块饼平均分给4个小朋友可以有几种分法。
生1: 我们先把1块饼看作单位“1”,平均分成4份,每人先拿其中的一份,有3个圆,那就是每人有3个1/4块是3/4块。
生2: 把3块饼重叠的放在一起,然后再平均分成4份,每人拿其中的一份,里面也有3个1/4是3/4块。
让学生通过动手操作,得出两种不同的分法,引申出两种含义,即1块饼的3/4,3块饼的1/4,通过这一过程,学生充分理解了3÷4=的算理。
分数除法的教学反思 第3篇
●教材分析
本节课是人教版六年级上册第三单元《分数除法》的第一课时,教学内容是课本第28、29页例1和例2以及32页练习八的第1~3题。这是学生在分数乘法基础上首次对分数除法运算进行学习探究,教学内容分为两个层次:第一,根据乘法和除法之间的关系,并由整数除法过渡到分数除法,让学生理解分数除法的意义;第二,从分数除以整数入手,根据除法的意义,让学生初步探索分数除以整数的计算方法。例1采用整数与分数、乘法与除法两种对比的方式,揭示出分数除法的意义与整数除法的意义相同;例2以折纸的操作活动为载体让学生在折一折、涂一涂的探究过程中逐步发现分数除法的计算方法,同时引导学生经历由特殊到一般的探索过程,理解分数除以整数的算理,学会分数除以整数的算法。
●学情分析
◇学生在学习本课内容前,已经能够理解乘法和除法之间的联系以及除法的意义,并知道分数乘法的意义和计算方法,为下一步学习分数除法运算做好知识储备。
◇六年级的学生已经具备一定的数学应用能力,他们能在联系与对比中将整数除法的意义类推至分数除法的意义。同时,他们在数学学习中,具备一定的动手操作能力,根据已有的知识经验,可以初步探索分数除法的计算方法。
◇小学生的思维正处于具体形象思维向抽象逻辑思维过渡阶段,他们的学习还需要借助结构性探究素材的探索和信息技术的帮助,才能对分数除法运算意义和方法进行自主探索,内化学习感知,形成综合技能。
●教学目标
知识与技能目标:了解分数除法的意义,理解分数除法的算理,并能正确计算分数除以整数。联系实际,发现生活中分数除以整数的现象,并综合运用“分数除以整数”的计算方法解决实际问题。
过程与方法目标:通过富有启发性的问题情境和探索性的操作学习活动,引导主动参与、独立思考、合作交流,初步探索分数除以整数的计算方式,体会数形结合、转化等数学思想方法。
情感态度与价值观目标:激发数学学习兴趣,培养积极参与的意识和自主、合作学习的能力;帮助感受数学与生活的联系,引导用数学的眼光观察发现、解决生活实际问题,并从中获得学习的乐趣。
●教学环境与准备
本节课通过实物展台、PPT课件等多媒体技术来呈现教学内容,开展学习探究活动,并根据教学中数学操作活动的需要,将班级学生分成5~6个学习小组,方便他们进行讨论、分析和汇报。
●教学过程
1.找准起点,复习引入
◇谈话引入:班级开展中队活动,买来一些水果糖,每盒水果糖重100g,3盒有多重?
学生根据已有知识,进行列式回答:100×3=300(g)
◇改编练习:这是一道列乘法算式解决的实际问题,你能改编成用除法算式的问题吗?
学生根据每盒糖果的重量、糖果盒数以及总重量之间的关系说出其他两个用除法计算的问题,并进行回答:
13盒水果糖重300g,每盒有多重?列式:300÷3=100(g)
2 300g水果糖,每盒100g,可以装几盒?列式:300÷100=3(盒)
信息技术支持:PPT根据学生回答的不同情况,运用触发功能,随机点出学生回答的问题及解决的方法,创设良好的人机互动、师生互动研讨交流氛围。
◇回顾意义:通过改编练习,你能说一说,整数乘除法算式之间有着怎样的联系吗?你是怎样理解整数除法的意义?
学生针对具体算式说一说,在乘法算式中,300是两个因数的积,而在除法算式中,300都是被除数,在两道除法算式中的除数都是乘法中的一个因数。整数除法的意义就是已知两个因数的积与其中的一个因数,求另一个因数的运算。
信息技术支持:PPT根据学生的回答的列式,保留三道列式,去掉其他信息,便于学生集中注意力,观察乘除法算式之间的联系。
2.沟通联系,理解意义
◇再次改编:每盒水果糖的重量原来用整数表示是100g,还可以运用分数来表示它的重量吗?同桌相互商量商量。
学生交流:可以运用“kg”做重量单位,把“100g”改成“1/(10)kg”,把“300g”改成“3/(10)kg”。
◇重新列式:让学生回答水果糖重量改成分数表示的情况,并列出分数乘除法算式。
◇对比发现:让学生对比这三道算式,发现分数乘法与除法算式之间的关系,理解分数除法的意义。
学生根据这三道算式,说一说分数乘法与除法之间的关系。分数乘法的积,在分数除法中都是被除数,除法中的除数或商都是乘法中的一个因数,从而得出分数除法的意义是已知两个因数的积与其中的一个因数,求另一个因数的运算。
信息技术支持:PPT根据学生的回答,运用色块进入动画效果,突出强调乘除法之间的关系。
◇沟通联系:同时出现整数乘除法与分数乘除法几道算式,让学生理解分数除法的意义与整数除法相同。
通过对比,加强分数乘除法与整数乘除法之间的联系,发现分数除法的意义与整数除法相同,都是“已知两个因数的积与其中的一个因数,求另一个因数的运算”。
◇初步运用:让学生根据分数除法的意义,可以由一道分数除法,得出有联系的两道分数除法算式的结果。学生根据“2/(3)×4/(7)=8/(21)”直接回答出:8/(21)÷4/(7)=2/(3),8/(21)÷2/(3)=4/(7)。
3.动手操作,理解算理
◇出示例2:一张纸的4/5平均分成2份,每份是这张纸的几分之几?引导学生动手实践操作。学生根据教师提供的纸,进行折一折,算一算。
◇小组讨论:让学生在小组中展示并讨论不同折法,带来的不同算法。
学生分组进行讨论:一种折法是把4个“1/5”平均分成2份,即得到2个“1/5”,结果为2/5;另一种折法是把4/5平均分成2份,即就是求4/5的1/2是多少,通过乘法计算,也能得到2/5。
◇全班交流:让学生说一说第一种方法,并说一说你比较喜欢哪一种方法,为什么?
学生汇报:一种方法是把4/5平均分成2份,就是把4个1/5平均分成2份,每份就是2个1/5,就是2/5,并说出相应的算式;另一种方法是把4/5平均分成2份,就是4/5的1/2,也就是4/5×1/2,并说出相应的算式。
学生比较:第一种方法计算相对简单,结果直接明了;第二种方法需要把除法问题转化成乘法问题进行解决,也能算出结果。
信息技术支持:PPT随机出示学生汇报的结果,实物展示同时展示学生动手操作,直观形象演示出学生的思考过程,让不同的方法形成鲜明的对比。
4.比较发现,掌握算法
◇深入探索:教师出示把4/(5)平均分成3份问题,让学生选择其中一种算法进行计算。
学生再次通过动手操作的方式,选择合适的方法来解决这一问题。
◇小结归纳:现在对比分数除法的两种方法,你有什么新的想法?
学生根据已经学习的方法,选择一种解决方法,通过思考,学生选择第二种方法,因为“4÷3”不能得到整数的结果,与“4÷2”有着不同。
◇探索算法:让学生对比“把4/5平均分成2份”与“把4/5平均分成3份”的两种不同算式,观察算式的第一步与原来的不同之处,得到分数除以整数的算法。
学生得到分数除法的一般方法,就是把一个数平均分成几份,即求这个数的几分之一是多少。
通过观察比较,学生得到算法:分数除以一个整数(0除外),就是乘以这个数的倒数。从而把分数除法问题转化成以前学习的分数乘法来解决。
信息技术支持:PPT触发的功能随机演示学生回答的不同情况,把数形结合的数学思维通过实例得到直观展示,帮助学生理解算理、掌握算法。
5.巩固训练,提升技能
◇学生根据分数乘除法之间的关系,复习分数乘法运算,同时也练习分数乘除法之间的关系。
◇计算练习。学生独立进行计算,完成之后交流反馈。
◇进行判断练习。出示一组判断,让学生进行练习。
◇游戏活动。学生进行对口令游戏。同桌一位说出分数除以整数的算式,另一位迅速把这道算式转化成相应的分数乘法算式。
信息技术支持:借助PPT进入和退出动画及触发的功能,灵活出示学生巩固练习,通过对比、变式等题组练习,提高课堂学生学习效率。
●设计意图
1.有效迁移,明晰算式意义
新课伊始,通过乘与除法的对比、以及整数与分数的变化,顺利让学生从已有旧知迁移到学习新知,拓展并建构学生对除法意义的认识。在课件制作上,创设有利于学生比较发现的教学条件,运用PPT的触发功能,根据学生的当场回答,相机出现改编的问题,突出学生的主体地位,使信息技术更好地服务于学生的探究学习。运用有效迁移,不仅降低了学生的学习起点,沟通了知识的前后联系,还使学生正确理解分数除法的意义,同时,发展了他们的思维能力。
2.数形结合,深刻理解算理
算理是掌握计算方法的基础。教学运用数形结合的方式,把分数除以整数的运算与长方形的均分联系在一起,打通学生折纸与计算之间的壁垒,让学生深刻理解分数除以整数的算理。把学生折、算的思考过程运用PPT形象地演示出来,充分运用信息技术动态、直观展示效果,带给学生强烈的视觉冲击,加深学生对算理的理解。同时,还运用了PPT的触发功能,使得教师对教学过程的处理更加灵活。
3.比较发现,熟练掌握算法
算法多样化是优化的前提。教学设计中,预设遵循从特殊到一般的探究规律,让学生在充分掌握特殊情况下的不同算法,再改变除数大小,促进学生深入思考,让他们在算法的选择中,理解分数除以整数的一般算法。在教学过程中,教师适时把握算法优化的契机。在信息技术上,采用进入与退出等动画效果,聚焦学生由算理抽象出算法的关键部分,让学生在此基础上充分展开探索,通过等号前后比较,学生发现计算规律,从而牢记并熟练运用一般算法。
4.广泛运用,提升学生素养
例谈小学分数除法的计算教学 第4篇
一、利用分数除以整数,开启分数除法计算
在分数除法教学中我们首先利用分数除以整数作为教学的第一步。课堂开始我们拿出学生们熟悉的“蛋糕模型”,我们将蛋糕模型平均分为5份,然后随机拿出3份,提问:“你们告诉老师我拿出来的蛋糕占整个蛋糕的几分之几?”学生异口同声地回答:“占全部蛋糕的五分之三。”教师在黑板上写下。之后教师将这三块蛋糕分别分给前排的三个学生,教师提问:“每个学生拿到全部蛋糕的几分之几?”学生们异口同声地回答:“每个学生拿到全部蛋糕的五分之一。”教师在的右侧写上。
教师提出探究性问题:“请同学们试用数学形式表示块蛋糕的由来。”之后我们将全班学生分为若干讨论小组进行讨论。在一番讨论之后,第一组学生说:“我们认为由于老师从五块蛋糕中拿出来的三块是大小相同的,所以将三块蛋糕分为三个学生的过程可以看作平均分配,可以看做除法的过程,可以用除法表示。”第二组学生说:“我们的计算过程是这样的,3÷3=1,每个学生得到一块蛋糕,而每块蛋糕占全部蛋糕的五分之一。所以得到。”第三组学生说:“我们进行了一次大胆的猜想,我们的计算过程为÷3=。因为在算式中每一个分子1都来自同一块蛋糕,所以我们认为将三块蛋糕平均分给三个学生的过程实际上是分子的变化过程,与分母无关。所以在计算中我们只需对分子进行计算,进而得到。”第三组学生说得有理有据,具有一定的说服力,我们给予该组学生表扬,并且以此为基础引出“分数除以整数,分母不变,只做分子除法”的计算法则。
二、利用整数除以分数,引出颠倒相乘计算法
分数除法教学的第二个阶段为整数除以分数。在这个教学阶段我们首次将分数作为除数,做好这一阶段的教学工作可以为“分数除以分数”的教学埋下一个良好的伏笔。对于整数除以分数的教学我们同样采用由浅入深的教学设计。首先我们以最简单的分数除法为敲门砖。我们在黑板上写下:“1÷”让学生进行计算,并且说出计算意义。仍以小组讨论的方式。在约2分钟的讨论之后,第一组学生说:“我们采用‘蛋糕模型,1作为一个蛋糕,代表将1个蛋糕分成2份,每1份为整体的二分之一。所以我组的计算结果为2。”第二学生说:“我们利用小数与分数的关系进行计算。=0.5,所以1÷=1÷0.5=2。”我们首先给予学生鼓励。接下来我们在黑板上写下:2÷,仍然让学生分组讨论,但这一次的讨论结果正如我们所料,学生纷纷表示不会计算。这时我们介入引导,我们拿出教学道具:一根两米长的绳子和一根一米长的绳子。进而引导学生思考:“现在只要利用这根绳子我就可以计算出答案。”一些学生率先想到了计算方法,举起手来。教师请一名学生上台,并且辅助其完成计算。学生先将一米长的绳子折成长度相等的三段,剪去其中一段,以剩下的绳长为单位测量两米长的绳子。结果发现2米长的绳子中含有3个该绳长。所以2÷=3。
由此我们总结分数除法的意义为:在整体中包含多少个个体,与整数除法的意义相同,所以整数除法的运算法则同样适用于整数除以分数的计算。在为学生打下分数除法的概念基础后,接下来的教学任务就迎刃而解了。我们出题:4÷,这一次我们引导学生认识分数除法的一般规律。设4÷=x,根据除法的计算法则,我们可以将等号两边同时乘以变为4÷×=x×,所以4=x×。根据分数乘法的运算法则×=1,我们同时在的等号两边乘以,得到4×=x××,所以x=4×。我们将计算前后的算式整合到一起,得到4÷=4×。学生发现当÷变成了×,除数的分子与分母发生了对调,这一现象十分有趣。学生迫不及待地想要试一试自己解题,我们给出几道例题:1÷,4÷,3÷在计算过程中我们发现学生在练习中的情绪十分积极,而且觉得这种变化十分好玩,形成兴趣学习氛围。之后我们又给出之前做过的分数除以整数的算式÷3,经过变形后得到×=,与之前的计算结果相符。根据除法的意义该该算式进行解释:取分份蛋糕的,也与蛋糕分配过程相符,说明分数除法的计算公式通用。由此我们可以总结:整数除以分数时,计算法则为“颠倒相乘”。
三、利用分数除以分数,掌握分数除法一般性
分数除法的最后一个教学内容为分数除以分数。以分数除以整数、整数除以分数为基础,分数除以分数也变得没有那么难了。首先我们在教学中为学生证明在分数除以分数中分数除法的运算法则同样有效。我们首先来举一个小例子。例题:以一班总人数为标准,二班男生数量是一班总人数的,二班女生数量是一班总人数的,问二班男女学生比例为多少。解题:我们设一班总人数为“1”,那么二班男生人数为,女生人数为,那么男女生比例为:,即÷。
利用上文总结的分数除法运算法则得到÷=×==21:10。为了验证这一结果是否正确我们假设一班总人数为70人,带入得二班男生人数为42人,女生人数为20人,二班男女学生比为42:20=21:10。与分数除法计算结果相同,说明分数与分数的除法适用分数除法的运算法则,即颠倒相乘。为了进一步验证分数除法法则的一般性,我们让学生解析例题÷。除法意义:中含有几个,因为×3=,所以结果显然为3个。研究过程:设÷=x,÷×=x×,=x×,×4=x××4,结果为3=x,与结论相符,说明颠倒相乘在分数除法中具有一般性。最后我们开展习题训练,练习中要加强学生对“颠倒相乘”的理解,复习分数乘法以及约分。
我们在教学中将教学难点——分数除法的教学内容进行合理拆分,引导学生对分数除法的各种情况进行逐一分析、总结、探究,从而降低教学难度,使学生在研究式学习下总结分数除法的一般规律,提高学生对“颠倒相乘”这一计算方式的理解,并且对分数除法有更深层的了解,从而提高学生的学习兴趣。
分数与除法的关系教学反思 第5篇
原州区第十一小学 黄文来
分数与除法的关系是在学生学习了分数的意义后进行教学的,目的是使学生初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示它们的商。
1.通过实际操作感悟新知识
在教学中,我设计了这样的教学情境,把一张饼平均分给四个小朋友,每人分得多少?让学生拿一张圆形纸片代表一张饼,亲自动手分一分,唤起对分数意义的理解。接着出示要把3张饼平均分给4个小朋友,每个小朋友分得多少?四人一小组想办法把3张圆形纸片平均分给4个小朋友。并让小组派代表上台展示分的过程。学生通过动手操作,得出两种不同的分法,引申出两种含义,即每人分得1张饼的四分之三,也可以说是3张饼的四分之一,通过这一过程,学生充分理解了3÷4=3/4的算理。
2、使学生清楚为什么要用分数来表示除法算式的结果 在学生理解了分数与除法的关系之后,我有意识的设计了这样几道练习题。1÷3=
8÷9= 2÷6=
让学生把计算结果写在练习本上,比比看谁先算完。结果有的学生一两秒钟就举起了手,而有的学生费了很长时间才写出了计算结果。汇报之后,引导学生思考:1÷3=0.333„„与1÷3=1/3
8÷9= 0.88„„与8÷9= 8/9有什么区别?学生最直接的回答是:用循环小数表示商计算太麻烦,没有用分数表示快捷、简便。这时告诉学生,以后计算两个整数相除的商,除不尽时或商里有小数时就用分数表示他们的商,这样既简便又快捷,而且不容易出错。
3、借机引申,为后续学习做好铺垫
第一次向学生介绍分率与数量的区别。如①“把一张饼平均分成4份,每份分得这张饼的几分之几?每份分得多少张饼?”② “把2米长的绳子平均分成7段,每段长是这根绳子的几分之几? 每段长多少米 ”③"把4千克盐平均分成5份,每份重量是盐的总数的几分之几 /每份重多少千克?先让学生明白这三道题第一问求的都是“分率”,分率没有单位,都是把总数看做单位“1”,把单位1平均分成若干份,求其中的一份是总数的几分之一,都是用单位“1”除以平均分的份数得到,如前三道题的分率分别是1÷4=1/4 1÷7=1/7 1÷5=1/5。而第二问都是求每份数量是多少,每份数量是有单位的,都是用总数量除以平均分的份数得到,得数一定带单位名称。前三道题第二问的算法分别是1÷4=1/4(张)2÷7=2/7(米)4÷5=4/5(千克)
此处学生理解了分率和每份数量之后,为后面学习分数、百分数应用题做了良好的铺垫作用。
4、让学生自主建构新知识
《分数与除法的关系》教学反思 第6篇
身为一名人民教师,课堂教学是我们的工作之一,通过教学反思可以有效提升自己的教学能力,如何把教学反思做到重点突出呢?以下是小编为大家收集的《分数与除法的关系》教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。
《分数与除法的关系》教学反思1教学分数与除法的关系时学生很是配合,仿佛早已掌握了所有知识点,对于我的提问对答如流,甚至当我给出例题3÷4时,全班不假思索不屑一顾的脱口而出四分之三,而当我问出为什么时,他们甚至不愿意去思考,仿佛我问的这个“为什么”简直就是废话中的废话。整个班级躁动不安,是清明假期来临的缘故吧。看着即将发怒的老师,孩子们安静下来一张张稚气的脸望着我,眼神中带有一丝丝惊恐。我突然想笑,这不就是儿时的自己吗?我沉住气笑着说:明天放假了,看来大家很是兴奋吧!孩子们长舒一口气掩面而笑。我接着说:站好最后一班岗的战士才是真正的好战士。同学们心领会神的坐得端端正正。“授人以鱼,不如授人以渔。”我接着说,“大家都知道3除以4得四分之三,那3除以4为什么等于四分之三呢?四分之三就相当于鱼。而老师想让你得到的是渔,你觉得呢?”果然还是聪明的孩子,轻轻一拨,大部分开始思考了,我和孩子们开始了我铺好的探究之旅。
一、通过操作,感悟算理。
我叫学生拿出课前准备好的三个圆,让学生在小组内用自己喜欢的方式来验证对3除以4这一结果的猜想。孩子们或静下心来仔细思考;或把自己手里的圆形折一折、剪一剪;或在本子上画一画、写一写;或同桌小声交流自己的想法。我把想法不同的孩子叫上讲台,在黑板上画出自己的思考过程。并让他们一一介绍。通过学生的操作,得出两种分法,方法
(一):把三个圆一个一个分,每次得四分之一,分3次,就得3个四分之一,就是四分之三张饼。
方法(二):把三个圆叠起来,平均分成4份,得到3张饼的四分之一,也是3个四分之一,相当于一张饼的四分之三。
不管怎样分,都可以验证3÷4用分数四分之三来表示结果。还有学生想出了方法(三):3除以4得0.75,0.75化成分数也是四分之三。
通过学生自主操作让其充分理解其中的算理。二、再次说理,悟出关系。
在学生初步感知分数与除法的关系时,我有意识地把例题改了一下,把3块饼平均分给5个人,把4块饼平均分给7个人,让学生通过画图或说理,快速的算出它们的商。让学生亲身体会到计算两个整数相除,除不尽或商里面有小数时就用分数表示他们的商,这样既简便又快捷,而且不容易出错。
通过学生自主生成的三道算式,让学生去发现除法与分数之间到底有怎样的关系?并把自己的想法和同桌互相交流。最终学生小结出:除法中的被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数线。并明确:除法是一种运算,而分数是一种数。
三、对比练习,深化知识。
出示:
把三块饼平均分给7个小朋友,每人分得这些饼的几分之几。
把三块饼平均分给7个小朋友,每人分得几分之几块。
让学生观察这两道题目的区别,一道带单位,一道不带单位。第一道是根据分数的意义把单位“1”平均分成几份,每份就是单位“1”的几分之一,是份数与单位“1”的关系,在数学中我们称为分率,分率不带单位。第二题带单位则表示的是一个具体的数量,则用总数量除以平均分的份数得到每份的具体数量,得数的单位跟被除数的单位一致。明确:分数有两种含义,一种表示与单位1 的关系即分率(不带单位),一种则表示具体的数量(要带单位),为以后学习分数和百分数应用题做好铺垫。
在教学过程中,让学生在自主参与,动手操作、观察比较、交流汇报的基础上去推理和概括,能达到事半功倍的效果。我一直崇尚让学生自己去发现,自己去总结,让学生能学习探究问题的方法,而不是单纯的教授一些解题技巧,因为我知道授生以“渔”永远比授生以“鱼”来的重要的多!
作者简介
刘璐,中国共产党党员,大学本科学历,艳梅名师工作室研修员。20xx年参加工作至今,一直担任小学数学教学工作。多次参加教学比武,分获市特等奖,县特等奖,县一等奖。数次被评为乡优秀教师,获县嘉奖。20xx年一师一优课获部级优课。坚持用“爱”和“知识”去呵护每一位学生,期待每个课堂都能充满“童真”.
《分数与除法的关系》教学反思2本节课在学习分数的意义基础上进行教学的。分数的.意义是从部分与整体的关系揭示的。分数与除法可以表示两个整数相除(除数不能为0)的商揭示分数的另一方面的意义,以加深和扩展学生对分数意义的理解,同时为学习假分数以及把假分数化为整数或带分数作准备。
成功之处:
夯实分数的意义的第二种情况。在教学例1时,将除法的意义与分数的意义联系起来。实际上把1个蛋糕平均分给3人,求每人分得几个,就是应用整数除法的意义来列算式,只不过结果是依据分数的意义得出来的。而在例2的教学中,首先通过学生把3块饼平均分给4个小朋友,每个小朋友分几块,也是应用平均分的除法意义列出算式,然后让学生实际分一分,学生通过动手操作得出三种不同的分法:一是把第1个饼平均分成4份,每个小朋友分得1/4块,再把第2、3个饼同样均分,最后每人分得3个1/4块,把它们拼在一起,得到1个饼的3/4;第二种是把3个饼摞在一起,平均分成4份,每个小朋友分得3个饼的1/4,拼在一起就是1个饼的3/4;第三种是把每个饼平均分成4份,一共分了12份,把12份平均分给4个小朋友,每个小朋友分3份,也就是3个1/4份,即3/4块。通过两个例题的教学,明确列式与整数除法的意义相同,在计算时依据被除数÷除数=被除数/除数,不足之处:
学生在求一个数是另一个数的几分之几时,列式总是出错,被除数和除数容易颠倒。
改进措施:
1.加强求一个数是另一个数的几分之几的列式训练。
2.在教学中还要加强分数意义的两种情况的对比,让学生明确分数不仅表示部分与整体之间的关系,还表示实际数量。
《分数与除法的关系》教学反思3教学分数与除法的关系时学生很是配合,仿佛早已掌握了所有知识点,对于我的提问对答如流,甚至当我给出例题÷4时,全班不假思索不屑一顾的脱口而出四分之三,而当我问出为什么时,他们甚至不愿意去思考,仿佛我问的这个“为什么”简直就是废话中的废话。整个班级躁动不安,是清明假期临的缘故吧。看着即将发怒的老师,孩子们安静下一张张稚气的脸望着我,眼神中带有一丝丝惊恐。我突然想笑,这不就是儿时的自己吗?我沉住气笑着说:明天放假了,看大家很是兴奋吧!孩子们长舒一口气掩面而笑。我接着说:站好最后一班岗的战士才是真正的好战士。同学们心领会神的坐得端端正正。“授人以鱼,不如授人以渔。”我接着说,“大家都知道除以4得四分之三,那除以4为什么等于四分之三呢?四分之三就相当于鱼。而老师想让你得到的是渔,你觉得呢?”果然还是聪明的孩子,轻轻一拨,大部分开始思考了,我和孩子们开始了我铺好的探究之旅。
一、通过操作,感悟算理。
我叫学生拿出前准备好的三个圆,让学生在小组内用自己喜欢的方式验证对除以4这一结果的猜想。孩子们或静下心仔细思考;或把自己手里的圆形折一折、剪一剪;或在本子上画一画、写一写;或同桌小声交流自己的想法。我把想法不同的孩子叫上讲台,在黑板上画出自己的思考过程。并让他们一一介绍。通过学生的操作,得出两种分法,方法(一):把三个圆一个一个分,每次得四分之一,分次,就得个四分之一,就是四分之三张饼。方法(二):把三个圆叠起,平均分成4份,得到张饼的四分之一,也是个四分之一,相当于一张饼的四分之三。不管怎样分,都可以验证÷4用分数四分之三表示结果。还有学生想出了方法(三):除以4得07,07化成分数也是四分之三。通过学生自主操作让其充分理解其中的算理。
二、再次说理,悟出关系。
在学生初步感知分数与除法的关系时,我有意识地把例题改了一下,把块饼平均分给个人,把4块饼平均分给7个人,让学生通过画图或说理,快速的算出它们的商。让学生亲身体会到计算两个整数相除,除不尽或商里面有小数时就用分数表示他们的商,这样既简便又快捷,而且不容易出错。
通过学生自主生成的三道算式,让学生去发现除法与分数之间到底有怎样的关系?并把自己的想法和同桌互相交流。最终学生小结出:除法中的被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数线。并明确:除法是一种运算,而分数是一种数。
三、对比练习,深化知识。
出示:
把三块饼平均分给7个小朋友,每人分得这些饼的几分之几。
把三块饼平均分给7个小朋友,每人分得几分之几块。
让学生观察这两道题目的区别,一道带单位,一道不带单位。第一道是根据分数的意义把单位“1”平均分成几份,每份就是单位“1”的几分之一,是份数与单位“1”的关系,在数学中我们称为分率,分率不带单位。第二题带单位则表示的是一个具体的数量,则用总数量除以平均分的份数得到每份的具体数量,得数的单位跟被除数的单位一致。明确:分数有两种含义,一种表示与单位1的关系即分率(不带单位),一种则表示具体的数量(要带单位),为以后学习分数和百分数应用题做好铺垫。
在教学过程中,让学生在自主参与,动手操作、观察比较、交流汇报的基础上去推理和概括,能达到事半功倍的效果。我一直崇尚让学生自己去发现,自己去总结,让学生能学习探究问题的方法,而不是单纯的教授一些解题技巧,因为我知道授生以“渔”永远比授生以“鱼”的重要的多!
《分数与除法的关系》教学反思4理解与掌握分数与除法的关系及其应用。不但可以加深对分数意义的理解,而且为后面学习假分数,带分数,分数的基本性质以及比,百分数打下基础。所以,分数与除法的关系及应用在整个教材中起到了承上启下的重要作用。执教教师能从整体上把我教材,激励学生积极参与教学活动:问题让学生自己解决;方法让学生自己探索;规律让学生自己发现;知识让学生自己获得;课堂上给了学生充足的思考时间和活动空间,同时学生有了表现自我的机会和成功的体验,培养了学生的自我意识,发挥了学生的主体作用。整个教学过程,结构严谨,层次分明,符合学生的认知规律,是学生独立地发现并应用了“分数与除法的关系”,发展了学生的思维能力,教学效果显著。
新课程标准强调要让学生在现实的情景中体验和理解数学,改变单一的接受式的学习方式,指导建立具有“主动参与,乐于探究,交流合作”特征的多样化的学习方式,从而促进学生知识,技能,情感,态度和价值观的整体发展。因此,教学学习活动应该是一个生动活泼的,主动的,富有个性的过程,教学的教与学的方式,应该是一个充满生命力的过程。在教学中我引导学生用3张圆形纸片动手分一分,并让学生思考把3块饼平均分给4个小朋友可以有几种分法,让学生通过动手操作,得出两种不同的分法,引申出两种含义,即一块饼的,3块饼的,通过这一过程,学生充分理解了“3÷4=”的算理。
探索是学生亲自经历和体验的学习过程,也就是让学生用自己理解的方式实现教学的“再创造”,在这其中教师的指导作用是潜在和深远的。本课中,教师让学生充分动手分圆片,让他们在自己的尝试,探究,思考中,不断产生问题,解决问题,在生成新的问题,给学生留足了操作的空间,因此学生对分数与除法的关系理解得比较透彻。
《分数与除法的关系》教学反思5分数与除法的关系是在分数的意义后进行教学的,使学生初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示商。但凡教过分数与除法的关系的老师都知道内容很简单,如果单纯地从形式上去教学它们的关系:一个分数的分子当于除法中的被除数,分母相当于除数,相信学生一定学得很扎实,但这样一来3÷4=的算理往往被忽视,为了让学生知其然且知其所以然,我是这样来组织教学的:
1、通过实际操作感悟新知识
新课程标准强调要让学生在现实的情景中体验和理解数学,改变单一的接受式的学习方式,指导建立具有“主动参与,乐于探究、交流合作”特征的多样化的学习方式,从而促进学生知识、技能、情感、态度和价值观的整体发展。因此,数学学习活动应该是一个生动活泼的、主动的、富有个性的过程,数学的教与学的方式,应该是一个充满生命活动力的过程。在教学中我引导学生用3张圆形纸片动手分一分,并学生思考把3块饼平均分给4个小朋友可以有几种分法,让学生通过动手操作,得出两种不同的分法,引申出两种含义,即1块饼的,3块饼的,通过这一过程,学生充分理解了3÷4=的算理。
2、在问题不断地解决与生成中探索新知识
探索是学生亲自经历和体验的学习过程,也就是让学生用自己理解的方式实现数学的“再创造”,在这其中教师的指导作用是潜在和深远的。本课中,我让学生充分动手分圆片,让他们在自己的尝试、探究、猜想、思考中,不断产生问题、解决问题、再生成新的问题,给学生留与了操作的空间,因此学生对分数与除法的关系理解得比较透彻。
本节课的教学着重让学生在以下几方面理解:
1、分数与除法之间有着密切的联系,但分数不等同于除法,二者之间有一定的区别:除法是一种运算,分数是一个数。
2、一个分数,不但可以从分数的意义上理解,也可以从分数与除法的关系上理解。如:四分之三可以理解为把单位“1”平均分成4份,表示其中的3份的数;也可以理解为把3平均分成4份,表示这样一份的数。
3、为了让学生更好的记忆分数与除法的关系,我还设计了顺口溜:
分数、除法关系妙,记忆方法有诀窍。
两数相除分数表,弄清位置很重要。
除号相当分数线,分子、分母两数担。
位置顺序不能调,相互关系要记牢。
《分数与除法的关系》教学反思6这节课的重点是理解分数与除法的关系,难点是用除法意义理解分数意义。让学生通过本节课的学习,初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示商。能运用分数与除法的关系,解决一些简单的问题。
这节课的内容还是比较简单的。如果单纯的教学它们的关系:一个分数的分子相当于除法中的被除数,分母相当于除数。学生一定学得很扎实,但是这样一来3÷4=的算理往往被忽视。因此我把重点放在例题2,3÷4=()(块)的探究上。
在教学中我引导学生用3张圆形纸片动手分一分,并让学生思考把3块饼平均分给4个小朋友可以有几种分法。
生1: 我们先把1块饼看作单位“1”,平均分成4份,每人先拿其中的一份,有3个圆,那就是每人有3个1/4块是3/4块。
生2: 把3块饼重叠的放在一起,然后再平均分成4份,每人拿其中的一份,里面也有3个1/4是3/4块。
让学生通过动手操作,得出两种不同的分法,引申出两种含义,即1块饼的3/4,3块饼的1/4,通过这一过程,学生充分理解了3÷4=的算理。
在整节课中我注重让学生主动参与学习过程,学生的主体地位得到了充分体现,在学习活动中,发展了个性,培养了能力。
《分数与除法的关系》教学反思7分数与除法的关系的理解与掌握,不但可以加深对分数意义的理解,而且为后面学习假分数、带分数、分数的基本性质以及比、百分数打下基础,所以,分数与除法的关系在整个教材中起到承上启下的重要作用。新课标指出:“学生的教学学习内容应当是现实的,有意义的,富有挑战性的,这些内容要有利于学生主动地进行观察,猜测,验证,推测与交流等教学活动.”这说明创设有效的学习情境,可以引导学生开展“自主,探索,合作”的学习活动,促进学生主动的参与。” 所以,在导入新课环节,我有意设计了两道除法计算题: 8÷9= 4÷7=
学生一看是这样两道除法算式,都松了口气,说:“这么简单的两道题啊!”于是我在班上开展了男女两组比赛,男生算第一题,女生算第二题。一声令下,男生埋头算起来,思维敏捷的胡雯欣早就知道了答案,根本没有动笔,我示意她不要说出答案。我转了一圈,大部分学生在已经做好的学生的提示下都已经有了答案,只有个别男生还在计算。
汇报后,我引发学生思考:8÷9= 0.88……和8÷9= 8/9有什么区别?学生最直接的回答是:用循环小数表示没有用分数表示快捷、简便。这个导入使学生明白两个数相除可以用分数来表示商,为进一步学习分数与除法的关系打下基础。
之后,再出示两个数相除的算式,学生都能够很快地用分数来表示商。
以例题中的1÷3=1/3引导学生发现除法中的被除数相当于分数中的分子,除数相当于分数中的分母后,让学生把数字换成它们的名称:被除数÷除数=分子/分母。这时候,我让学生用字母a、b表示除法与分数的关系。薛龙凤上黑板认真地写下:a÷b=a/b,我见这个学生写得很认真,马上表扬了她,并要求学生为她鼓掌。正当大家都为薛龙凤高兴的时候,我在她写的算式后面打了个小小的“×”。学生立刻表示不解,刚刚老师夸了了她,现在怎么又给她判“×”。还是几个思维灵活的先叫起来,说到:“b不能等于0!”我马上抓住这个契机,发问到:“为什么b不能等于0?”班上顿时安静下来,谁也说不上来原因。这个难点马上就要突破了,我心里有点小小的激动。我继续利用例题中的把1块蛋糕平均分给3个人,每人分得这块蛋糕的1/3为例问道:“谁来说说这个分数中的‘3’表示什么?”有学生举手回答:“把蛋糕看做单位‘1’,‘3’表示把蛋糕平均分成的份数。”“如果把‘3’换成‘0’呢?”学生终于明白:分母表示把单位“1”平均分成的份数,平均分成“0”份就没有意义了。就这个“a÷b=a/b(b≠0)”学生经常会忘记,这里的b要强调不能为0。通过这样分析,学生能够更加深刻地认识到在除法中除数不能为0,而在分数中分母不能为0。
我觉得这个环节我处理的比较好,不是直接告诉学生在除法中除数不能为0,除数相当于分数中的分母,所以分母也不能为0。而是通过分析一个分数的实际意义充分理解分数中的分母表示平均分的份数,自然不能被平均分成“0”份。