正文内容
《带电粒子在匀强电场中的运动》教学设计
来源:文库
作者:开心麻花
2025-09-18
1

《带电粒子在匀强电场中的运动》教学设计(精选14篇)

《带电粒子在匀强电场中的运动》教学设计 第1篇

《带电粒子在匀强电场中的运动》教学设计

湖北省武汉市青山区武钢十六中 朱广林

【课题】

《带电粒子在匀强电场中的运动》──人民教育出版社新课标教材《选修3-1》,2004年5月第一版,第一章第8节。

【学习任务分析】

1、探究带电粒子在匀强电场中的加速、偏转规律。

2、探究示波管的工作原理。

【学习者分析】

思维基础:平时教学中,注重“模型分析-猜想-实验验证-上升理论”模式的教学,学生已习惯于这种科学探究的学习模式。

心理特点:学生在强烈兴趣(实验引入)的驱使下,利用已有知识进行新规律的探究,既有挑战性,也有成就感。

已有知识:学生熟悉自由落体运动规律;理解粒子在电场中的受力特征和功能关系。

【教学目标】

一、知识与能力

1、理解带电粒子在匀强电场中的运动规律,并能分析和解决加速和偏转方面的问题。

2、知道示波管的基本原理。

3、让学生动脑(思考)、动笔(推导)、动手(实验)、动口(讨论)、动眼(观察)、动耳(倾听),培养学生的多元智能。

二、过程与方法

1、通过复习自由落体运动规律,由学生自己推导出带电粒子在匀强电场中的加速和偏转规律。

2、通过由浅入深、层层推进的探究活动,让学生逐步了解示波管的基本原理。

3、使学生进一步发展“猜想-实验-理论”的科学探究方法,让学生主动思维,学会学习。

三、情感态度与价值观

1、通过理论分析与实验验证相结合,让学生形成科学世界观:自然规律是可以理解的,我们要学习科学,利用科学知识为人类服务。

2、利用带电粒子在示波管中的蓝色辉光、示波器上神奇变换的波形,展现科学现象之美,激发学生对自然科学的热爱。

【教学过程分析和设计】

一、实验引入,激发兴趣

1、接通示波管电源,演示带电粒子在电场中运动撞击气体而发出蓝色辉光,调节加速和偏转电压,轨迹发生改变,引发学生强烈兴趣。指出蓝色辉光不是电子,但可以显示电子运动轨迹,如图所示。

2、接通示波器电源,演示荧光屏上的正弦图像,如图所示。

3、在大屏幕上投影出本节课的学习目标。

二、探究带电粒子在匀强电场中的加速和偏转规律

1、〖探究1〗带电粒子经过电压U加速,如何求获得的速度?如图一所示。

学生动笔推导,老师巡堂,找一个书写正确工整的手稿投影在大屏幕上,其它学生对照。此处为刚学内容,一般学生都能很快由动能定理推出速度。从快处理。

2、提问:平抛运动的规律?

学生动笔推导,老师巡堂,找一个书写正确工整的手稿投影在大屏幕上,其它学生对照。此处知识简单,从快处理。

3、〖探究2〗带电粒子以初速度v0垂直电场方向进入偏转电场,从另一端穿出。粒子在电场中做何运动?其偏转距离y和偏转角的正切值tan θ如何计算?与U有何关系?如图二所示。

学生推导,老师巡堂,个别指导。时间约5分钟。找一个书写正确工整的手稿投影在大屏幕上,教师作出评价,其它学生对照。

4、〖探究3〗带电粒子以vt速度离开偏转电场,在到达荧光屏之前作何运动?在荧光屏上的偏转距离y′如何计算?y′与U有何关系?如图三所示。

三、探究示波管的工作原理

1、提问:若x=l=4cm,v0=8×10m/s,则电子穿过偏转电极间的时间t为多少?意味着什么?

学生通过简单计算,易知t=l/v0=1/(2×10)s,即为20亿分之1秒!可以认为电子的偏转是几乎不需要时间的。若偏转电压发生变化,则电子在荧光屏上的位置同步变化!如图四所示。这是理解示波管原理的关键所在。

862、〖探究1〗探究荧光屏上图像与竖直方向电压关系

探究方式:先投影出表格中左边电压图像,学生分组讨论、猜想,小组发言陈述荧光屏上可能图像及理由,再由老师实验演示(从学生信号源向示波器输入方波信号,扫描置于“外x”档),与表格右边图像对照,是否一致。当猜想与实验结果一致时,学生能立即享受到成功的喜悦;不一致时,更能引发学生思考,学生在解决思维冲突中构建知识,提高能力。

3、〖探究2〗探究荧光屏上图像与水平方向电压关系

说明:将方波电压由竖直方向变为水平方向的规律是容易理解的,但偏转电压由跳跃式的变为连续变化的锯齿波,学生在思维上有较大难度。而在第1步中通过计算得出偏转时间极短,这里还可以与锯齿波的周期进行比较,电子大概在锯齿波周期的千万分之一内就通过了偏转电场!可以认为,电子在迅速穿过偏转电场过程中,偏转电压还“来不及”变化!由此得到每一个瞬时电压对应于荧光屏上一个唯一点,荧光屏上的位置与电压同步均匀变化,这个过程叫“扫描”。有此基础,以后的探究就简单多了。

4、〖探究3〗探究示波管原理

说明:先行呈示水平和竖直方向电压波型,学生作出猜想、讨论、小组发言,阐述荧光屏将出现何种图像和理由;再由老师实验演示;最后由几何画板课件模拟两个匀速直线运动合成规律(如左下图所示),以加强理解。

正弦波图像的显示原理与方波基本相同,探究步骤同上。用几何画板课件模拟一个匀速直线运动和一个简谐运动合成规律(如右上图所示),以加强理解。

四、课外探究活动

1、如何得到如下所示波型?同学之间可以通过讨论、猜想,到实验室进行实验验证。必要时可以寻求老师和实验员的帮助。

2、上网查询了解示波器有哪些用途?有哪些种类?将结果发布在校园论坛上,与大家共享。

五、作业

1、课后练习

【教学策略】

一、提出先行组织者,逐步分化,综合贯通

从3个方面执行知识的先行组织:

1、通过示波管辉光和示波器正弦波型演示,激发学生强烈兴趣,然后在大屏幕投影出学习目标,形成学习动机。

2、复习相关已有知识,如自由落体运动规律、电场知识。

3、在知识的组织结构功能方面,表现出形式图式的性质和特征:设计理解示波管工作原理的表格,目标任务一目了然。

二、知识建构

通过复习旧知识,构建新知识,着眼于学生的最近发展区,为学生提供带有难度的内容,调动学生的积极性,发挥其潜能,超越其最近发展区而达到其困难发展区的水平,然后在此基础上进行下一个发展区的发展。

三、支架式教学

采用“剥壳”方式,将示波管原理的难度层层分解,使学生从最低一级“支架”逐渐往上“爬”,“爬”不上去还可以从目标表格退回学习,理解后继续前进,让学生一步步取得成功。

四、探究式学习

1、让学生自己根据已有知识推导出带电粒子在匀强电场中的加速和偏转规律,获得合理知识结构。

2、设计表格,让学生自己探究出示波管的工作原理。

3、学生分组探究,培养学生的协作、沟通、表达能力和团队精神。

【教学评价与反思】

一、成功之处

1、运用国内外先进教学理念,采用探究式教学,支架式设计,让学生自己获得规律,理解原理,学生的学习效果和知识的牢固程度要远远优于传统教学模式。事实证明,学生在以后做示波器实验时已相当熟练;即使经过一年后,高三复习时也有大部分学生对该部分知识记忆犹新。

2、采用“理论—猜想—实验—理论”模式,有效调动学生多种感官,发展学生多元智能,面向全体学生,让具有不同特点的学生都能得到发展,注重因材施教。

3、以学生为课堂主体,老师起着引领方向和监控全局的作用。老师的主体作用表现在课前:如何引入?如何设问?如何设计探究的层次和难度?设计合理的教学设计,永远是一项极具挑战性和创造性的工作。

4、这节课的重点是推导、理解规律而非计算。为了避免在计算上花费太多时间,两个例题中都不要求算出结果,因为粒子速度、偏转距离和偏向角对示波管的原理影响都不大。但有一个数据是很重要的──粒子穿过偏转电场的时间极短。把此细节放大,是为了让学生理解偏转距离随偏转电压同步变化,这是理解示波管原理的关键所在。

5、采用多媒体技术,免去板书时间,大大提高课堂执行效率。采用幻灯片投影,方便学生交流学习成果。

二、问题反思

1、学生能力因人而异,在推导规律过程中,少数学生不能按时完成,影响对后续知识的理解。但探究模式为大势所趋,老师最好不要代替学生进行推导。要让学生逐渐适应探究学习,提高独立研究能力,有困难的学生可课后单独指导。

2、课堂容量较大,既有理论推导,又有猜想讨论,还有实验验证。老师要宏观调控,合理分配时间。重点在弄清基本原理,不能增加其它例题,留待后续解决。

3、学生对示波管的原理还处在探究中,加之示波器的面板又十分复杂,因此不可能由学生自己完成探究实验。学生的主体作用表现在理论推导、猜想分析等一系列思维活动中,实验均为老师演示。以后有专门的学生实验来练习使用示波器。

《带电粒子在匀强电场中的运动》教学设计 第2篇

嘉积中学

冯逸

带电粒子在磁场中的圆周运动历来都是高考考查的重要内容!该课程的内容包括两部分:

一、带电粒子在匀强磁场中的运动。

二、带电粒子在匀强磁场中的运动的实际应用———质谱仪和回旋加速器。具体的教学目标是:①知道带电粒子垂直匀强磁场的运动轨迹是个圆,知道其半径与粒子的速度和磁感应强度有关。②能从理论上分析带电粒子垂直于匀强磁场运动是匀速圆周运动,能推导做圆周运动的半径和周期公式。③了解质谱仪和回旋加速器的工作原理。由于前两部分内容都是教学的重点。并且本节内容和以前的力学知识紧密结合,综合性较强,构成教学的难点。

《带电粒子在匀强电场中的运动》教学设计 第3篇

带电粒子 (质量为m、电量为q) 以速度v0垂直于场强方向飞入匀强电场 (两极板电压为U偏、两极板距离为d2、两极板长度为l) 时, 受到恒定的与初速度方向成90°角的电场力作用而做类平抛运动, 应用运动的合成与分解知识可求得两个核心物理量:

离开电场时的偏移量:

y=12at2=12qUmd2 (lv0) 2=qUl22d2mv02

离开电场时的偏转角:

tanθ=vv0=atv0=qUmd2lv0v0=qUld2mv02

由①②两式可得:tanθ=yl/2

结论1:粒子从偏转电场中射出时, 就好像是从极板间的l/2处沿直线射出似的.

二、带电粒子在匀强电场中先加速后偏转

带电粒子从静止开始先经过加速电场 (两极板电压为U加、两极板距离为d1) 加速, 又进入偏转电场射出.设进入偏转电场的初速度为v0, 则

qU=12mv02

由①③可得:y=Ul24d2U

由②③可得:tanθ=Ul2d2U

由④⑤可知:yθ与粒子的电量和质量无关.

结论2:不同电量的同性带电粒子, 若经同一电场加速后, 又进入同一偏转电场, 则它们的运动轨迹必重合.

带电粒子在加速电场中运动时间

t1=d1v0/2

联立③⑥两式解得:t1=d12mqU

带电粒子在偏转电场中运动时间

t2=2ya2

其中a2=qUmd2

联立④⑦⑧解得:t2=lm2qU

带电粒子穿越两电场总时间t=t1+t2= (2d+l) m2qUmq

结论3:不同电量的同性带电粒子, 若经同一电场加速后, 又进入同一偏转电场, 则它们穿越两电场总时间与偏转电场无关, 与粒子的比荷有关.

设带电粒子穿越两电场后速度大小为vt, 由动能定理可得:

qU+qE2y=12mvt2

解得:vt=2q (U+E2y) mqm (不同粒子偏移量y相同)

结论4:不同电量的同性带电粒子, 若经同一电场加速后, 又进入同一偏转电场, 则它们穿越两电场后速度与粒子的比荷有关.

在解题中若能熟练掌握并灵活利用这些结论, 常常会收到意想不到的效果.

三、结论的应用

例1 静止的一价、二价铜离子经同一电场加速, 再进入同一偏转电场后打在荧光屏上.不计离子重力, 以下说法中正确的是 ( )

(A) 一价离子到达屏上的速度比二价离子大

(B) 从进入加速电场开始计时, 二价离子到达屏上所用的时间较长

(C) 在经过加速电场时, 一价离子所受的电场力冲量小

(D) 两种离子打到屏上的位置相同

解析:由结论4可知, 选项 (A) 错;

由结论3可知, 选项 (B) 错;

由结论2可知, 选项 (D) 正确;

对于选项 (C) , 由动量定理可得:电场力冲量Ι=mv=2mEk, 而Ek=qU加, 则Ι=2mqU, 由此可见, 一价离子所受的电场力冲量小.选项 (C) 正确.

答案: (C) 、 (D) .

例2 有一种电子仪器叫示波器, 可以用来观察电信号随时间变化的情况.示波器的核心部件是示波管, 它由电子枪、偏转极板和荧光屏组成, 管内抽成真空, 如图1所示是示波管的工作原理图.

(1) 设灯丝产生的热电子由阴极飞出时的初速度忽略不计, 电子枪间的加速电压为U0.竖直偏转电极板YY′和水平偏转极板XX′长都为l, YY′和XX′两极板间的距离均为d. YY′和XX′紧密相连, 不计它们间的间隙.水平偏转极板XX′右端到荧光屏的距离为D.如果在偏转极板XX′不加上电压, 偏转极板YY′上也不加电压, 电子将打到荧光屏上中点O (即坐标轴的坐标原点) .如果在偏转极板XX′上不加电压, 只在偏转极板YY′上加一电压Uy (正值) , 电子将打到荧光屏上y轴上正方向某一点, 求光点的y坐标值.

(2) 如果在偏转极板YY′上不加电压, 只在偏转极板XX′上加一电压Ux (正值) , 电子将打到荧光屏上x轴上正方向某一点, 求光点的x坐标值.

解析: (1) 设电子从电子枪打出时的速度为v0, 根据动能定理得:

eU0=12mv02

电子进入偏转电场后做类平抛运动, 离开偏转电场时的速度方向:

tanθ=vv0=atv0=eUymdlv0v0=eUyldmv02=Uyl2dU0

离开电场时好像从极板中点沿末速度方向射出一样, 所以

y= (D+l+l2) tanθ= (D+3l2) Uyl2dU0

(2) 同理可得:

x= (D+l2) tanθ= (D+l2) Uxl2dU0

《带电粒子在匀强电场中的运动》教学设计 第4篇

《带电粒子在匀强电场中的运动》教学设计 第5篇

同心县豫海回民中学

锁俊明

一、教学目标

(一)知识与技能

1、理解洛伦兹力对粒子不做功.2、理解带电粒子的初速度方向与磁感应强度的方向垂直时,粒 子在匀磁场中做匀速圆周运动.3、会推导带电粒子在匀强磁场中做匀速圆周运动的半径、周期 公式,并会用它们解答有关问题.知道质谱仪的工作原理。

(二)过程与方法

通过综合运用力学知识、电磁学知识解决带电粒子在复合场(电场、磁场)中的问题.培养学生的分析推理能力.(三)情感态度与价值观

通过对本节的学习,充分了解科技的巨大威力,体会科技的创新历程。

二、重点与难点:

重点:带电粒子在匀强磁场中做匀速圆周运动的半径和周期公式,并能用来分析有关问题.难点:1.粒子在洛伦兹力作用下做匀速圆周运动.2.综合运用力学知识、电磁学知识解决带电粒子在复合场中的问题.三、教具:洛伦兹力演示仪、电源、多媒体等

四、教学过程:

(一)复习引入

[问题1]什么是洛伦兹力?[磁场对运动电荷的作用力] [问题2]洛伦兹力的大小和方向如何确定?[大小:F=qvBsinθ 方向:左手定则] [问题3]带电粒子在磁场中是否一定受洛伦兹力?[不一定,洛伦兹力的计算公式为F=qvBsinθ,θ为电荷运动方向与磁场方向的夹角,当θ=90°时,F=qvB;当θ=0°时,F=0.]

带电粒子进入匀强磁场时到底会做什么运动呢?今天我们来学习—— 带电粒子在匀强磁场中的运动

(二)新课讲解---第六节、带电粒子在匀强磁场中的运动

一、带电粒子在匀强磁场中的运动

问题1:带电粒子平行射入匀强磁场的运动状态?(重力不计)

匀速直线运动

问题2:带电粒子垂直射入匀强磁场的运动状态?(重力不计)(1)当v⊥B 时,洛伦兹力的方向与速度方向的关系?(2)带电粒子仅在洛伦兹力的作用下,粒子的速率变化么?(3)洛伦兹力如何变化?

(4)从上面的分析,你认为垂直于匀强磁场方向射入的带电粒子,在匀强磁场中的运动状态如何? 实验:洛伦兹力演示仪(1)构造: ①电子枪:射出电子

②加速电场:作用是改变电子束出射的速度.③励磁线圈:作用是能在两线圈之间产生平行于两线圈中心的连线的匀强磁场.(2)实验演示

a、不加磁场时观察电子束的径迹.b、给励磁线圈通电,观察电子束的径迹.c、保持初射电子的速度不变,改变磁感应强度,观察电子束径迹的变化.d、保持磁感应强度不变,改变出射电子的速度,观察电子束径迹的变化.(3)实验结论

①沿着与磁场垂直的方向射入磁场的带电粒子,在匀强磁场中做匀速圆周运动.②磁感应强度不变,粒子射入的速度增加,轨道半径也增大。③粒子射入速度不变,磁感应强度增大,轨道半径减小。理论分析

因为:洛仑兹力总与速度方向垂直.所以:洛仑兹力不改变速度大小,洛仑兹力的大小也就不变.结论:带电粒子在垂直于磁场的平面内做匀速圆周运动。由洛仑兹力提供向心力。

【注意】带电粒子做圆周运动的向心力由洛伦兹力提供。通过“思考与讨论”,使学生理解带电粒子在匀强磁场中做匀速圆周运动,的轨道半径r和周期T与粒子所带电量、质量、粒子的速度、磁感应强度有什么关系。

[出示投影]

一带电量为q,质量为m ,速度为v的带电粒子垂直进入磁感应强度为B的匀强磁场中,其半径r和周期T为多大?

[问题1]什么力给带电粒子做圆周运动提供向心力?[洛伦兹力给带电粒子做圆周运动提供向心力]

[问题2]向心力的计算公式是什么?[F=mv2/r]

v2[教师推导]粒子做匀速圆周运动所需的向心力F=m是由粒子所受

r的洛伦兹力提供的,所以

qvB=mv2/ r由此得出r=

mv qBT=2r2m2m可得T= qBvqB(2)、轨道半径和周期

带电粒子在匀强磁场中做匀速圆周运动的轨道半径及周期公式.1、轨道半径r =【说明】:

(1)轨道半径和粒子的运动速率成正比.(2)带电粒子在磁场中做匀速圆周运动的周期跟轨道半径和运动速率无关.例

1、(见PPT课件)[出示投影课本例题]

2、如图所示,一质量为m,电荷量为q的粒子

mv

2、周期T =2πqBm/ qB 从容器A下方小孔S1飘入电势差为U的加速电场,然后让粒子垂直进入磁感应强度为B的磁场中,最后打到底片D上.(1)粒子进入磁场时的速率。(2)求粒子在磁场中运动的轨道半径。

解:(1)粒子在S1区做初速度为零的匀加速直线运动.由动能定理知,粒子在电场中得到的动能等于电场对它所做的功,即 mv2qu

由此可得v=2qu/m.(2)粒子做匀速圆周运动所需的向心力是由粒子所受的洛伦兹力提v2供,即 qvBm

r12所以粒子的轨道半径为 r=mv/qB=2mu/qB2

[教师讲解]r和进入磁场的速度无关,进入同一磁场时,r∝

m,q而且这些个量中,u、B、r可以直接测量,那么,我们可以用装置来测量比荷或算出质量。

例题给我们展示的是一种十分精密的仪器------质谱仪 质谱仪是一种十分精密的仪器,是测量带电粒子的质量和分析同位素的重要工具.---例题

3、如图所示为质谱仪的原理示意图,电荷量为q、质量为m的带正电的粒子从静止开始经过电势差为U的加速电场后进入粒子速度选择器,选择器中存在相互垂直的匀强电场和匀强磁场,匀强电场的场强为E、方向水平向右.已知带电粒子能够沿直线穿过速度选择器,从G点垂直MN进入偏转磁场,该偏转磁场是一个以直线MN为边界、方向垂直纸面向外的匀强磁场.带电粒子经偏转磁场后,最终到达照相底片的H点.可测量出G、H间的距离为l.带电粒子的重力可忽略不计.求:

(1)粒子从加速电场射出时速度v的大小.(2)粒子速度选择器中匀强磁场的磁感应强度B1的大小和方向.

(3)偏转磁场的磁感应强度B2的大小.

(三)对本节要点做简要小结.(四)课后作业:

《带电粒子在匀强电场中的运动》教学设计 第6篇

您身边的高考专家

磁 场

带电粒子在匀强磁场及在复合场中的运动规律及应用

知识要点:

1、带电体在复合场中运动的基本分析: 这里所讲的复合场指电场、磁场和重力场并存, 或其中某两场并存, 或分区域存在, 带电体连续运动时, 一般须同时考虑电场力、洛仑兹力和重力的作用。

在不计粒子所受的重力的情况下,带电粒子只受电场和洛仑兹力的作用,粒子所受的合外力就是这两种力的合力,其运动加速度遵从牛顿第二定律。在相互垂直的匀强电场与匀强磁场构成的复合场中,如果粒子所受的电场力与洛仑兹力平衡,粒子将做匀速直线运动;如果所受的电场力与洛仑兹力不平衡,粒子将做一般曲线运动,而不可能做匀速圆周运动,也不可能做与抛体运动类似的运动。在相互垂直的点电荷产生的平面电场与匀强磁场垂直的复合场中,带电粒子有可能绕场电荷做匀速圆周运动。

无论带电粒子在复合场中如何运动,由于只有电场力对带电粒子做功,带电粒子的电势能与动能的总和是守恒的,用公式表示为 qUa12mvaqU2b12mvb

22、质量较大的带电微粒在复合场中的运动

这里我们只研究垂直射入磁场的带电微粒在垂直磁场的平面内的运动,并分几种情况进行讨论。

(1)只受重力和洛仑兹力:此种情况下,要使微粒在垂直磁场的平面内运动,磁场方向必须是水平的。微粒所受的合外力就是重力与洛仑兹力的合力。在此合力作用下,微粒不可能再做匀速圆周运动,也不可能做与抛体运动类似的运动。在合外力不等于零的情况下微粒将做一般曲线运动,其运动加速度遵从牛顿第二定律;在合外力等于零的情况下,微粒将做匀速直线运动。

无论微粒在垂直匀强磁场的平面内如何运动,由于洛仑兹力不做功,只有重力做功,因此微粒的机械能守恒,即 mgha12mvamghb212mvb(2)微粒受有重力、电场力和洛仑兹力:此种情况下。要使微粒在垂直磁场的平面内运动,匀强磁场若沿水平方向,则所加的匀强电场必须与磁场方向垂直。

在上述复合场中,带电微粒受重力、电场力和洛仑兹力。这三种力的矢量和即是微粒所受的合外力,其运动加速度遵从牛顿第二定律。如果微粒所受的重力与电场力相抵消,微粒相当于只受洛仑兹力,微粒将以洛仑兹力为向心力,以射入时的速率做匀速圆周运动。若重力与电场力不相抵,微粒不可能再做匀速圆周运动,也不可能做与抛体运动类似的运动,而只能做一般曲线运动。如果微粒所受的合外力为零,即所受的三种力平衡,微粒将做匀速直线运动。

无论微粒在复合场中如何运动,洛仑兹力对微粒不做功。若只有重力对微粒做功,则微粒的机械能守恒;若只有电场力对微粒做功,则微粒的电势能和动能的总和守恒;若重力和电场力都对微粒做功,则微粒的电势能与机械能的总和守恒,用公式表示为: qUamgha12mvaqU2bmghb12mvb

2 版权所有@高考资源网

高考资源网(ks5u.com)

您身边的高考专家

过选择器。

如图, 设在电场方向侧移vEBd后粒子速度为v, 当时: 粒子向f方向侧移, F做负功——粒子动能减少, 12mv0qEd2电势能增加, 有

12mv;当v2EB时, 粒子向

F方向侧移, F做正功——粒子动能增加, 电势能减少, 有12mv0qEd212mv2;

5、质谱仪

质谱仪主要用于分析同位素, 测定其质量, 荷质比和含量比, 如图所示为一种常用的质谱仪, 由离子源O、加速电场U、速度选择器E、B1和偏转磁场B2组成。

同位素荷质比和质量的测定: 粒子通过加速电场, 根据功能关系, 有

12mv2qU。粒

子通过速度选择器, 根据匀速运动的条件: vEB。若测出粒子在偏转磁场的轨道直径为2R2mvB2q2mEB1B2qd, 则d , 所以同位素的荷质比和质量分别为

qm2EB1B2d;mB1B2qd2E。

6、磁流体发电机

工作原理: 磁流体发电机由燃烧室O、发电通道E和偏转磁场B组成, 如图所示。

在2500开以上的高温下, 燃料与氧化剂在燃烧室混合、燃烧后, 电离为导电的正负离

子, 即等离子体, 并以每秒几百米的高速喷入磁场, 在洛仑兹力作用下, 正、负离子分别向上、下极板偏转, 两极板因聚积正、负电荷而产生静电场, 这时, 等离子体同时受到方向相反的洛仑兹力f与电场力F的作用。

当f > F时, 离子继续偏转, 两极电势差随之增大;当f = F时, 离子匀速穿过磁场, 两极电势差达到最大值, 即为电源电动势。

电动势的计算: 设两极板间距为d, 根据两极电势差达到最大值的条件f = F, 即vEB/dB, 则磁流体发电机的电动势Bdv。

带电粒子在电场中的运动 第7篇

持静止状态或匀速直线运动状态。

例 带电粒子在电场中处于静止状态,该粒子带正电还是负电?

分析 带电粒子处于静止状态,∑F=0,mg=Eq,因为所受重力竖直向下,所以所受电场力必为竖直向上。又因为场强方向竖直向下,所以带电体带负电。

②若∑F≠0且与初速度方向在同一直线上,带电粒子将做加速或减速直线运动。(变速直线运动)

打入正电荷,将做匀加速直线运动。

打入负电荷,将做匀减速直线运动。

③若∑F≠0,且与初速度方向有夹角(不等于0°,180°),带电粒子将做曲线运动。

mg>Eq,合外力竖直向下v0与∑F夹角不等于0°或180°,带电粒子做匀变速曲线运动。在第三种情况中重点分析类平抛运动。

2.若不计重力,初速度v0⊥E,带电粒子将在电场中做类平抛运动。

复习:物体在只受重力的作用下,被水平抛出,在水平方向上不受力,将做匀速直线运动,在竖直方向上只受重力,做初速度为零的自由落体运动。物体的`实际运动为这两种运动的合运动。

与此相似,不计mg,v0⊥E时,带电粒子在磁场中将做类平抛运动。

板间距为d,板长为l,初速度v0,板间电压为U,带电粒子质量为m,带电量为+q。

①粒子在与电场方向垂直的方向上做匀速直线运动,x=v0t;在沿电

若粒子能穿过电场,而不打在极板上,侧移量为多少呢?

注:以上结论均适用于带电粒子能从电场中穿出的情况。如果带电粒子没有从电场中穿出,此时v0t不再等于板长l,应根据情况进行分析。

设粒子带正电,以v0进入电压为U1的电场,将做匀加速直线运动,穿过电场时速度增大,动能增大,所以该电场称为加速电场。

进入电压为U2的电场后,粒子将发生偏转,设电场称为偏转电场。

例1质量为m的带电粒子,以初速度v0进入电场后沿直线运动到上极板。

(1)物体做的是什么运动?

(2)电场力做功多少?

(3)带电体的电性?

例2 如图,一平行板电容器板长l=4cm,板间距离为d=3cm,倾斜放置,使板面与水平方向夹角α=37°,若两板间所加电压U=100V,一带电量q=310-10C的负电荷以v0=0.5m/s的速度自A板左边缘水平进入电场,在电场中沿水平方向运动,并恰好从B板右边缘水平飞出,则带电粒子从电场中飞出时的速度为多少?带电粒子质量为多少?

例3 一质量为m,带电量为+q的小球从距地面高h处以一定的初速度水平抛出。在距抛出点水平距离为l处,有一根管口比小球直径略大的

管子上方的整个区域里加一个场强方向水平向左的匀强电场。如图:

求:(1)小球的初速度v;

(2)电场强度E的大小;

《带电粒子在匀强电场中的运动》教学设计 第8篇

关键词:微观带电粒子,匀强磁场,洛伦兹力,直线,圆周,螺旋线

微观的带电粒子进入匀强磁场中, 由于仅受洛伦兹力的作用, 而洛伦兹力又不做功, 所以在运动过程中速率不变。微观带电粒子进入匀强磁场中的运动通常有三种情况:

1 速度方向平行于磁场方向进入时

由于不受洛伦兹力作用, 所以它的运动状态不发生改变, 做匀速直线运动。

2 速度方向垂直于磁场方向进入时

带电的微观粒子在洛伦兹力的作用下将做匀速圆周运动, 洛伦兹力提供向心力, 根据运动学公式可推出该圆周运动的半径, 周期和时间公式:

这类问题的常见的分析方法是:

2.1 画轨迹, 找圆心, 找半径

1) 在带电粒子运动轨迹上任意取两点, 作与速度方向垂直的直线 (洛伦兹力方向) , 两直线一定交于圆心, 或利用圆心位置必定在圆中一根弦的中垂线上作出圆心位置, 由圆心和轨迹利用几何知识可求出轨迹的半径。

2) 如图所示, 粒子经圆弧AB的速度偏向角α等于该圆弧的圆心角θ, 且等于AB弦与切线的夹角 (弦切角) β的2倍。

2.2 粒子在磁场中运动时间t的确定

求出轨迹所对应圆心角θ的大小, 则

1) 如图所示, 初速度近似为零的电子经u=1000V的电势差加速后, 从电子枪T发射出来, 出射速度沿射线a的方向。若要求电子能击中在α=60°方向, 距枪口处的距离d=5.0cm的靶M上, 就磁场B垂直于由射线a与M所确定的面情形, 求出所用的匀强磁场的磁感应强度B。 (电子的质量m=9.110-31kg, 电量e=1.610-19C)

2) 在半径为r的圆形区域内存在着垂直纸面向外的磁感应强度为B的匀强磁场, 一个质量为m, 电量为q的带正电粒子 (不计重力) 以速度v沿半径方向进入磁场中, 求粒子的运动半径和在磁场中的运动时间。

3 速度方向与磁场成一般夹角进入时

可以仿照前两种的运动, 将速度分解为沿磁场和垂直于磁场的两个方向, 沿磁场方向不受洛伦兹力的作用做匀速直线运动, 垂直于磁场方向受洛伦兹力的作用在垂直于磁场的平面内做匀速圆周运动, 所以这种情况的运动可以看成是沿磁场方向的匀速直线运动和垂直于磁场的匀速圆周运动的合运动, 它的运动轨迹应该是螺旋线。

如图所示, 在空间内存在着水平向右的匀强磁场磁感应强度为B, 一个质量是m, 电量为q的带电粒子 (不计重力) 以速度v沿与水平方向成θ角进入磁场中。求:

1) 该螺旋线的运动半径是多少?

带电粒子在匀强磁场中运动的分析 第9篇

关键词: 带电粒子 匀强磁场 运动分析

一、带电粒子在磁场中的运动

1.匀速直线运动:若带电粒子的速度方向与磁场方向平行(相同或相反),此时带电粒子所受的洛伦兹力为零,带电粒子将以入射速度v做匀速直线运动。

2.匀速圆周运动:若带电粒子垂直匀强磁场方向进入磁场,则做匀速圆周运动。

(1)qvB=m■,得出r=■

(2)T=■=■

注意:①洛仑兹力始终和速度垂直,洛仑兹力不做功。

②r与v有关,T与v、r无关。

图3.6-2 带电粒子在匀强

磁场中做匀速圆周运动。

3.等螺距的螺旋线运动:当带电粒子与磁场一夹角θ(θ≠0o,900,1800)时,带电粒子做等螺距的螺旋线运动。

二、带电粒子在有界匀强磁场中做圆周运动的解题方法

正确解决这类问题的前提和关键是:画轨迹、找圆心、定半径、求时间。

1.找圆心:圆心一定在与速度方向垂直的直线上,通常有四种情况。

(1)已知入射点与方向和出射点与方向时,可以通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心。

(2)已知入射点与入射方向和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心。

(3)已知圆弧两不平行弦,两弦的中垂线必为圆心。

(4)已知粒子进入磁场和离开磁场时的速度方向(具体的位置未知),则圆心必在速度夹角的角平分线上。

根据以上总结的结论可以分析下面几种常见的不同边界磁场中的运动规律:

①直线边界(进出磁场具有对称性,如图(a)、(b)、(c)所示);

②平行边界(存在临界条件,如图(a)、(b)、(c)所示);

③圆形边界(沿径向射入必沿径向射出,右图所示)。

2.定半径:

(1)利用公式r=■计算,再利用几何图求其他量。

(2)用几何知识(勾股定理、三角函数等)求出半径的大小。

3.求时间:粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为α时,其运动时间表示为:t=■T(或t=■T).

注意:偏向角Ф,圆心角α,弦切角θ三者关系:Ф=α=2θ.

例1.如图所示,一束电子(电量为e)以速度v垂直射入磁感应强度为B,宽度为d的匀强磁场中,穿过磁场时速度方向与电子原来入射方向的夹角是30°,则电子的质量是?摇?摇 ?摇?摇?摇,穿过磁场的时间是?摇?摇?摇 ?摇?摇。

解析:电子在磁场中运动,只受洛伦兹力作用,故其轨迹是圆弧的一部分,又因为F⊥v,故圆心在电子穿入和穿出磁场时受到洛伦兹力指向交点上,如图中的O点,由几何知识知,圆心角θ=30°,所以r=d/sin30°=2d.

又由r=■得m=2dBe/v.

又因为AB圆心角是30°,所以穿过时间t=■T=■×■=■.

例2.如图所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF.一电子从边界CD外侧以速率v■垂直射入匀强磁场,入射方向与边界CD间夹角为θ.已知电子的质量为m、电荷量为e,为使电子能从磁场的另一侧EF射出,则电子的入射速率v■至少多大?

解析本题考查圆周运动的边界问题.当入射速率v■很小时,电子会在磁场中转动一段圆弧后又从CD一侧射出.入射速率越大,轨道半径越大,当轨道刚好与边界EF相切时,电子恰好能从EF射出,如图所示,电子恰好能射出时,由几何知识可得

r+rcosθ=d.

由evB=m■得r=■.

联立得v■=■,

故电子要射出磁场,速率至少为■.

针对练习:如下图,在xOy坐标系的第一象限内有互相正交的匀强电场E与匀强磁场B,E的大小为1.0×10■V/m,方向未知,B的大小为1.0T,方向垂直纸面向里;第二象限的某个圆形区域内,有方向垂直纸面向里的匀强磁场B′。一质量m=1×10■kg、电荷量q=1×10■C的带正电微粒以某一速度v沿与x轴负方向60°角从A点沿直线进入第一象限运动,经B点即进入处于第二象限内的磁场B′区域,一段时间后,微粒经过x轴上的C点并与x轴负方向成60°角的方向飞出。已知A点的坐标为(10,0),C点的坐标为(-30,0),不计粒子重力,g取10m/s■。

(1)请分析判断匀强电场E的方向并求出微粒的运动速度v;

(2)匀强磁场B′的大小为多大?

(3)B′磁场区域的最小面积为多少?

【思路点拨】洛伦兹力与安培力的关系:洛伦兹力是安培力的微观实质,安培力是洛伦兹力的宏观表现。所以洛伦兹力的方向与安培力的方向一样也由左手定则判定。

【解析】(1)由于重力忽略不计,微粒在第一象限内仅受电场力和洛伦兹力,且微粒做直线运动,速度的变化会引起洛伦兹力的变化,所以微粒必做匀速直线运动。这样,电场力和洛伦兹力大小相等,方向相反,电场E的方向与微粒运动的方向垂直,即与x轴正方向成30°角斜向右上方。

由力的平衡条件有Eq=Bqv

得v=■=■m/s=10■m/s

(2)微粒从B点进入第二象限的磁场B′中,画出微粒的运动轨迹如右图。

粒子在第二象限内做圆周运动的半径为R,由几何关系可知:

R=■cm=■cm

微粒做圆周运动的向心力由洛伦兹力提供,即qvB′=m■

B′=■=■代入数据解得B′=■T

(3)由图可知,B、D点应分别是微粒进入磁场和离开磁场的点,磁场B′的最小区域应该分布在以BD为直径的圆内。由几何关系易得BD=20cm,磁场圆的最小半径r=10cm。

所以,所求磁场的最小面积为S=πr■=0.01π=3.1×10■m■.

参考文献:

[1]物理选修3-1.人民教育出版社.

《带电粒子在匀强电场中的运动》教学设计 第10篇

(一)知识与技能

1、理解带电粒子在电场中的运动规律,并能分析解决加速和偏转方向的问题.

2、知道示波管的构造和基本原理.(二)过程与方法

通过带电粒子在电场中加速、偏转过程分析,培养学生的分析、推理能力(三)情感、态度与价值观

通过知识的应用,培养学生热爱科学的精神 重点

带电粒子在匀强电场中的运动规律 难点

运用电学知识和力学知识综合处理偏转问题 教学方法

讲授法、归纳法、互动探究法 教具 多媒体课件

教学过程(一)引入新课

带电粒子在电场中受到电场力的作用会产生加速度,使其原有速度发生变化.在现代科学实验和技术设备中,常常利用电场来控制或改变带电粒子的运动。

具体应用有哪些呢?本节课我们来研究这个问题.以匀强电场为例。(二)进行新课

教师活动:引导学生复习回顾相关知识点(1)牛顿第二定律的内容是什么?(2)动能定理的表达式是什么?(3)平抛运动的相关知识点。(4)静电力做功的计算方法。

学生活动:结合自己的实际情况回顾复习。师生互动强化认识:(1)a=F合/m(注意是F合)(2)W合=△Ek=Ek2Ek1(注意是合力做的功)(3)平抛运动的相关知识

(4)W=F·scosθ(恒力→匀强电场)

W=qU(任何电场)

1、带电粒子的加速 教师活动:提出问题

要使带电粒子在电场中只被加速而不改变运动方向该怎么办?

(相关知识链接:合外力与初速度在一条直线上,改变速度的大小;合外力与初速度成90°,仅改变速度的方向;合外力与初速度成一定角度θ,既改变速度的大小又改变速度的方向)学生探究活动:结合相关知识提出设计方案并互相讨论其可行性。学生介绍自己的设计方案。

师生互动归纳:(教师要对学生进行激励评价)方案1:v0=0,仅受电场力就会做加速运动,可达到目的。

方案2:v0≠0,仅受电场力,电场力的方向应同v0同向才能达到加速的目的。教师投影:加速示意图.

学生探究活动:上面示意图中两电荷电性换一下能否达到加速的目的?(提示:从实际角度考虑,注意两边是金属板)学生汇报探究结果:不可行,直接打在板上。

学生活动:结合图示动手推导,当v0=0时,带电粒子到达另一板的速度大小。(教师抽查学生的结果展示、激励评价)教师点拨拓展:

方法一:先求出带电粒子的加速度:

a=qU

md再根据

vt2-v02=2ad

可求得当带电粒子从静止开始被加速时获得的速度为:

vt=

qU2dmd2qUm

方法二:由W=qU及动能定理:

W=△Ek=1mv2-0

2得:

qU=1mv2

2到达另一板时的速度为:

v=

.2qUm深入探究:

(1)结合牛顿第二定律及动能定理中做功条件(W=Fscosθ恒力

W=Uq 任何电场)讨论各方法的实用性。

(2)若初速度为v0(不等于零),推导最终的速度表达式。学生活动:思考讨论,列式推导(教师抽查学生探究结果并展示)教师点拨拓展:

(1)推导:设初速为v0,末速为v,则据动能定理得

qU=1mv2-1mv02

2所以

v=

2022qUvm

(v0=0时,v=2Uqm)方法渗透:理解运动规律,学会求解方法,不去死记结论。(2)方法一:必须在匀强电场中使用(F=qE,F为恒力,E恒定)方法二:由于非匀强电场中,公式W=qU同样适用,故后一种可行性更高,应用程度更高。

实例探究:课本例题1 第一步:学生独立推导。第二步:对照课本解析归纳方法。

第三步:教师强调注意事项。(计算先推导最终表达式,再统一代入数值运算,统一单

位后不用每个量都写,只在最终结果标出即可)过渡:如果带电粒子在电场中的加速度方向不在同一条直线上,带电粒子的运动情况又如何呢?下面我们通过一种较特殊的情况来研究。

2、带电粒子的偏转

教师投影:如图所示,电子以初速度v0垂直于电场线射入匀强电场中. 问题讨论:

(1)分析带电粒子的受力情况。

(2)你认为这种情况同哪种运动类似,这种运动的研究方法是什么?(3)你能类比得到带电粒子在电场中运动的研究方法吗? 学生活动:讨论并回答上述问题:

(1)关于带电粒子的受力,学生的争论焦点可能在是否考虑重力上。

教师应及时引导:对于基本粒子,如电子、质子、α粒子等,由于质量m很小,所以重力比电场力小得多,重力可忽略不计。

对于带电的尘埃、液滴、小球等,m较大,重力一般不能忽略。

(2)带电粒子以初速度v0垂直于电场线方向飞入匀强电场时,受到恒定的与初速度方向成90°角的作用而做匀变速曲线运动,类似于力学中的平抛运动,平抛运动的研究方法是运动的合成和分解。

(3)带电粒子垂直进入电场中的运动也可采用运动的合成和分解的方法进行。CAI课件分解展示:

(1)带电粒子在垂直于电场线方向上不受任何力,做匀速直线运动。

(2)在平行于电场线方向上,受到电场力的作用做初速为零的匀加速直线运动。深入探究:如右图所示,设电荷带电荷量为q,平行板长为L,两板间距为d,电势差为U,初速为v0.试求:

(1)带电粒子在电场中运动的时问t。(2)粒子运动的加速度。(3)粒子受力情况分析。

(4)粒子在射出电场时竖直方向上的偏转距离。(5)粒子在离开电场时竖直方向的分速度。(6)粒子在离开电场时的速度大小。(7)粒子在离开电场时的偏转角度θ。[学生活动:结合所学知识,自主分析推导。(教师抽查学生活动结果并展示,教师激励评价)投影示范解析:

解:由于带电粒子在电场中运动受力仅有电场力(与初速度垂直且恒定),不考虑重力,故带电粒子做类平抛运动。

粒子在电场中的运动时间

t=

L v0加速度

a=Eq=qU/md

m竖直方向的偏转距离:

y=1at2=

21UqL2qL2()U.22mdv02mv0dv1=at=粒子离开电场时竖直方向的速度为

UqL

mdv0 速度为:

v=

UqL222v12v0()v0mdv0粒子离开电场时的偏转角度θ为:

tanθ=

v1qLqLUarctanU.22v0mv0dmv0d

拓展:若带电粒子的初速v0是在电场的电势差U1下加速而来的(从零开始),那么上面的结果又如何呢?(y,θ)学生探究活动:动手推导、互动检查。(教师抽查学生推导结果并展示: 结论:

y=

UL24U1d

θ=arctan

UL 2U1d与q、m无关。

3、示波管的原理

出示示波器,教师演示操作 ①光屏上的亮斑及变化。②扫描及变化。

③竖直方向的偏移并调节使之变化。④机内提供的正弦电压观察及变化的观察。

学生活动:观察示波器的现象。阅读课本相关内容探究原因。教师点拨拓展,师生互动探究:

多媒体展示:示波器的核心部分是示波管,由电子枪、偏转电极和荧光屏组成。投影:示波管原理图:

电子枪中的灯丝K发射电加速电场加速后,得到的速度v0=

子,经为:

2qU1m如果在偏转电极yy上加电压电子在偏转电极离开偏转电极yy后沿直线前yy的电场中发生偏转.进,打在荧光屏上的亮斑在竖直方向发生偏移.其偏移量y为y=y+Ltanθ

因为y=

θ

qL2U22mv0dqL222mv0d

tan

qLU2mv0d

qLU2mv0d所以y=·U+L·

=qLL·U=(L+L)tanθ

(L)222mv0d如果U=Umax·sinωt则y=ymax·sinωt 学生活动:结合推导分析教师演示现象。(三)课堂总结、点评 1.带电粒子的加速

(1)动力学分析:带电粒子沿与电场线平行方向进入电场,受到的电场力与运动方向在同一直线上,做加(减)速直线运动,如果是匀强电场,则做匀加(减)速运动.

(2)功能关系分析:粒子只受电场力作用,动能变化量等于电势能的变化量.

(初速度为零);11212 此式适用于一切电场. 2qUmvqUmvmv022

22.带电粒子的偏转

(1)动力学分析:带电粒子以速度v0垂直于电场线方向飞入两带电平行板产生的匀强电场

0中,受到恒定的与初速度方向成90角的电场力作用而做匀变速曲线运动(类平抛运动).

(2)运动的分析方法(看成类平抛运动):

①沿初速度方向做速度为v0的匀速直线运动.

②沿电场力方向做初速度为零的匀加速直线运动.

(四)布置作业

1、书面完成 “问题与练习”第3、4、5题;思考并回答第1、2题。

带电粒子在电场中的运动说课稿 第11篇

大家上午好!我是来自xxxx,我今天要说的课题是:“带电粒子在电场中的运动”。

学生已经在必修1、2中学习了恒力作用下的匀变速直线运动和平抛运动;学习了选修3-1中静电场的有关知识(课件)。通过对上述内容的回顾引导学习将“带电粒子在电场中的运动”这节课的两种运动状态带电粒子的加速和带电粒子的偏转与物体的自由落体运动和平抛运动进行类比(课件),通过用类比法来学习本节课。

今天我从以下6个方面进行说课(课件)。

1、教材分析

“带电粒子在电场中的运动”是高一选修3-1第一章静电场的最后一节的内容(课件),也是本章的重点内容。本节内容是在学生学习了运动学、动力学和静电场中电场强度、电势能和电势、电势差、电势差与电场强度的关系知识后才进行编排的,是运动学、动力学和电磁学第一次的综合应用。(课件)带电粒子在电场中的运动和后面将要学到的带电粒子在匀强磁场中的运动,对它们的研究是为以后学习带电粒子在电磁场的应用奠定知识基础。此外,“带电粒子在电场中的运动”的知识与人们的日常生活、生产技术和科研有着密切的关系,因此这部分知识有广泛的现实意义。

本节有两个特点(课件),特点一是带电粒子在电场中的运动综合了运动学、动力学、电磁学的知识,有助于培养学生综合运用知识的能力;特点二是注重理论与实际的结合,体现了从理论研究到实际应用的科学发展之路,有助于增强学生将物理知识应用于生活和实际生产实践的意识。

2、教学目标

教学目标设计体现了物理新课程的三维教学目标:

(1)知识和技能

①理解电压对带电粒子加速和偏转的影响;

②能全面地描述带电粒子在电场中运动时电场力做的功和电势能的变化之间的关系;

③了解带电粒子在电场中的加速和偏转在生活和生产实践中的具体应用。

(2)过程与方法

①对带电粒子的加速,能用类比的方法,推导出带电粒子到达负极板时的速度;

②对带电粒子的偏转,能用类比的方法,结合例题2,逐步地推导出偏转位移和偏转角的表达式。

(3)情感态度和价值

①体会类比法在问题解决中的重要作用;

②结合回顾第5节“电势差”中静电力做功的求解方法即动能定理,让学生体会动能定理的优越性;

③通过列举一些带电粒子在电场中的运动的应用实例,提高学生将物理知识应用于生活和生产实践中的意识,发展学生对科学的好奇心和求知欲。

3、教学的重点和难点

如果能抓住分析带电粒子在电场中运动的方法,也就把握了带电粒子在电场中运动的所有相关问题,所以在本节的教学中,(课件)要把分析带电粒子在电场中的加速和偏转问题的方法作为教学的重点;充分发挥教师的主导作用,使教学的主体学生能理解和掌握类比这种方法。

高一学生的思维具有单一性、定势性,他们习惯于分析纯运动学、纯动力学或纯电磁学的问题,对带电粒子在电场中的偏转的问题,学生普遍会感到有些困难,它的运动过程虽然比较简单但综合了运动学、动力学和电磁学的知识,(课件)因此带电粒子在电场中的偏转问题是教学的难点。

4、教学方法

根据本节课的教学内容和学生的实际情况,采用的教学方法是:(课件)以演示实验为基础,以引导学生的思考活动为主线,在整个教学活动中贯穿教为主导,学为主体的教学思想。

本节课运用类比的方法来引导学生在原有知识的基础上建构新知识,提高学生的知识迁移能力和培养学生的创造能力。教学中注重引导式教学,引导学生将已学知识和新知识进行联系。在教师引导下,学生能用已有知识分析问题、解决问题,注重学生的自主学习。

5、教学程序

从以上分析,教学中掌握知识为中心,培养能力为方向,紧抓重点,突破难点,设计如下教学程序:

引入新课(这部分教学大约需要5min)

通过复习放入静电场中的电荷,由于受到静电力的作用而移动,使学生明确电场对放入其中的电荷具有加速的作用。进一步提问问题:带电粒子放入匀强电场中又会怎样?由此引入课题。

新课教学

新课教学有三大知识块:带电粒子的加速、带电粒子的偏转、示波器的原理。

在讲第一个知识块“带电粒子的加速”之前,首先让学生计算电子在电场中所受的重力为什么可以忽略不计,加深学生对电子在电场中的重力忽略不计的理解。

在讲带电粒子加速时,教师通过演示粉笔的自由落体运动,引导学生思考物体的自由落体运动与带电粒子的加速有什么相似之处?通过学生的回答,引导学生将带电粒子加速与物体的自由落体运动进行类比,让学生使用自己能想到的所有可行方法去推导带电粒子到达负极板时的速度。一开始可能很多学生倾向于直接用运动学公式求解,接着教师引导学生从“功是能量转化的量度”出发,结合回顾第5节“电势差”中静电力做功的求解方法,探讨能量视角的方法即动能定理,让学生体会动能定理这种方法的优越性。为了让学生全面了解带电粒子在电场中的运动即带电粒子在电场中的运动也存在考虑重力的情况,比如带电小球在电场中平衡的问题(课件),小球所受的重力跟电场力可以比拟,在这种情况下,重力就必须考虑了;还有考虑重力的带电油滴的巧妙应用密立根实验(课件),教师通过介绍密立根实验,让学生体会建立物理模型的重要现实意义。为了让学生感受物理科学在生活中的重要作用,培养学生学习物理的兴趣,这时教师可以用多媒体投影生活中带电粒子在电场中加速的应用实例。

第二知识块:带电粒子的偏转。为了让学生更加直观的体会带电粒子的偏转现象,加深学生对带电粒子的偏转的理解,教师可以通过自制的教具来演示带电粒子在电场中的偏转(课件)。演示实验结束后,教师引导学生回忆曲线运动的条件,并提问学生带电粒子的偏转与物体的平抛运动有什么相似之处?通过学生地回答,教师引导学生将带电粒子的偏转与平抛运动进行类比,然后用分析平抛运动的方法分析例题2。对例题2先进行受力分析,然后再进行运动的合成与分解,分解成水平方向上的匀速直线运动和竖直方向上的类自由落体运动,通过以上分析来解例题2。为了让学生全面了解带电粒子在电场中可能的运动情况,即带电粒子在匀强电场中运动时,若初速度与电场强度方向不垂直,有一定的夹角(课件),提问学生带电粒子将做什么运动?接下来让学生将重力场和静电场进行比较,(课件)如从加速度出发,让学生明确静电场和重力场不仅有相似之处,还有区别。

第三个知识点:示波器的原理。教师通过讲解示波管中扫描电压的作用,来讲解示波器的原理,教学中可以用在机械振动中演示过的沙摆实验来进行比喻。因为以前学生做过沙摆这个实验,所以这样比喻学生比较容易理解。

到此新课已经结束,教师留出几分钟的时间让学生自评(课件)。

自评和布置作业(这部分教学需要5min)

通过自评了解学生这节课的学习情况,并对学生进行合理的评价。

教师布置作业:通过让学生收集这节课所学知识在生产和生活中有关的应用实例,发布到校园网上,以实现资源共享或形成书面文字,同学之间进行交流讨论。

6、结语

(课件)总之,在本节课的设计中,定位于引导式教学,注重学生的自主学习,通过类比的方法在原有知识的基础上建构新知识。

《带电粒子在匀强电场中的运动》教学设计 第12篇

一、教材的分析

1、地位和作用:

本节是高中物理课本选修3-1第一章第八节的内容。电场是电学的基本知识,是学好电磁学的关键。本节是本章知识的重要应用之一,是力学知识和电学知识的综合。在教学大纲和考试说明中都把本节知识列为理解并掌握的内容。通过对本节知识的学习,学生能够把电场知识和牛顿定律、动能定理、运动的合成与分解等力学知识有机地结合起来,加深对力、电知识的理解,有利于培养学生用物理规律解决实际问题的能力,同时也为以后学习带电粒子在磁场中的运动打下基础。

2.教材的安排与编者意图:

这节教材先从能量角度入手研究了带电粒子在电场中的加速,然后,又从分析粒子受力情况入手,类比重力场中的平抛运动,研究了带电粒子在匀强电场中的偏转问题。编者安排这一节,一方面是加深对前面所学知识的理解,另一方面是借助分析带电粒子的加速和偏转,使学生进一步掌握运动和力的关系,培养学生应用物理知识解决实际问题的能力。

二.【教学目标】

知识与能力

1、理解带电粒子在匀强电场中的运动规律,并能分析和解决加速和偏转方面的问题。

2、知道示波管的基本原理。

3、让学生动脑(思考)、动笔(推导)、动手(实验)、动口(讨论)、动眼(观察)、动耳(倾听),培养学生的多元智能。

过程与方法

1、通过复习自由落体运动规律,由学生自己推导出带电粒子在匀强电场中的加速和偏转规律。

2、通过由浅入深、层层推进的探究活动,让学生逐步了解示波管的基本原理。

3、使学生进一步发展“猜想-实验-理论”的科学探究方法,让学生主动思维,学会学习。

情感态度与价值观

1、通过理论分析与实验验证相结合,让学生形成科学世界观:自然规律是可以理解的,我们要学习科学,利用科学知识为人类服务。

2、利用带电粒子在示波管中的蓝色辉光、示波器上神奇变换的波形,展现科学现象之美,激发学生对自然科学的热爱。三.重点 难点

重点让学生清楚带电粒子在电场中加速和偏转的原理的有关规律,这是本节内容的中心。由于带电粒子的偏转是曲线运动,比较复杂,学生理解起来有一定的困难,是本节的难点,通过类比重力场中的平抛运动突破难点。

四、教法 学法:

1.教学的方法

分析讨论探究 学生分组讨论 2.学法指导:

实验 讨论

五、教学过程:

为了切实完成所定教学目标,充分发挥学生的主体作用,对一些主要的教学环节采取了如下设想:

⑴以演示实验设疑,创设学习情景,激发学习兴趣,引入新课。

介绍电子束演示仪,并说明只有高速带电的粒子(电子)轰击管内惰性气体发光,才能看到电子的径迹。学生会对电子如何获得速度产生疑问,通过控制电子束的偏转方向,学生又会对这一目的的如何实现产生疑惑,从而强烈地激发了学生的求知欲望,进而提出课题。约3分钟。

⑵在新课教学中,以微机模拟与问题探讨想结合进行理论分析,使学生由感性认识上升到理性认识。

①.以微机演示电子在电场中加速和偏转运动的全过程,让学生观察分析:电子运动的全过程可以分为那几个阶段?在每一阶段电子各做什么运动?这样可以使学生先在整体上对带电粒子运动的全过程有清晰的脉 络,有助于局部过程的分析。

②.以微机演示电子在加速电场中的运动,让学生思考如何求电子射出加速电场时的速度?并进行推导。使学生认识到在匀强电场中可以根据牛顿定律和动能定理求速度,同时指出应用能量的观点研究加速问题比较简单,动能定理也适用于非匀强电场。从而培养学生分析问题、解决问题的能力,进一步养成科学思维的方法。

③.以微机演示电子在偏转电场中的运动,并引导学生观察思考:①电子在偏转电场中的运动与物体在重力场中的平抛运动有什么相同点和不同点?②如何类比重力场中的平抛运动来分析带电粒子的偏转?这样的引导之后学生自然会找到解决问题的方法,从而突破了难点,也培养了学生对知识的迁移能力。同时渗透事物之间普遍联系的辨证唯物主义思想。

④.在上述理论分析的前提下,让学生动手动笔推导侧向速度V┸,侧向位移y及偏转角Ф的表达式。使学生清楚知识的来龙去脉,加深记忆,培养学生应用物理知识解决实际问题的能力。

⑤.引导学生分组讨论:如何改变电子射出加速电场时的速度、电子射出偏转电场时的侧向位移及偏转角的大小?进一步对加速和偏转的原理深化理解,充分挖掘学生潜能。

⑥.用电子束演示仪验证理论分析的正确性,使学生由理性认识回到实践中来。

⑶设置联系加速和偏转的全过程的问题进行巩固练习,培养学生应用新知综合分析问题解决问题的能力,同时进行知识反馈。

⑷小结:设置问题1:我们怎样实现对带电粒子的控制?引导学生进行知识小结;设置问题2:学习带电粒子在电场中运动的目的是什么?理论联系实际,培学生开拓意识和创新精神。

⑸布置作业:以巩固知识,丰富学生知识面为目的,同时减轻学生负担,作业为课后1、3题,并要求学生查阅有关带电粒子加速和偏转应用的科普文章。

4.板书设计:纲要式板书,力求条理清晰,体现中心内容,突出重点。

《带电粒子在匀强电场中的运动》教学设计 第13篇

一、知识准备

【教师】物体做平抛与类平抛运动的力学特征怎样?

【学生】初速度与合外力垂直,合外力为恒力,轨迹为抛物线,可分解为两个相互垂直的直线运动来处理。

【教师】根据学生的回答在黑板上画出示意图(如图1)。

【教师】物体做匀速圆周运动的力学特征又怎样?

【学生】物体所受合外力大小不变,方向时刻在改变,合外力全部提供给物体做匀速圆周运动所需的向心力。合外力方向与速度方向时刻垂直。合外力不做功,速度大小不变。

【教师】根据学生的回答在黑板上画出示意图(如图2)。

二、提出问题

【教师】一带负电,电量为q的粒子,以初速度v垂直进入磁感强度为B的匀强磁场中。此粒子在该磁场中将做什么运动?请大家做出判断。

【学生】有的认为是类平抛运动,有的认为是圆周运动。

【教师】你是怎样判断的?

【学生】我们知道力是改变物体运动状态的根本原因,在洛仑兹力F作用下,粒子将做曲线运动,如图3所示。当粒子从A点运动到C点时,粒子的速度为v1、粒子所受的洛仑兹力为F1,由左手定则可判断出,v1⊥F1。同理,当粒子运动到D点时,速度v2与洛仑兹力F2垂直,即v2⊥F2,明显不是类平抛运动。

【教师】(进一步追问)不是类平抛运动,那是圆周运动吗?

【学生】因为洛仑兹力自始至终垂直于速度,所以它对粒子不做功,由动能定理可知,粒子速度的大小不发生变化,也就是说洛仑兹力仅改变粒子的运动方向。由于速度大小不变,所以洛仑兹力(f=Bqv)大小也不变,方向随速度方向时刻在改变。如图4所示,粒子所受洛仑兹力提供其做圆周运动所需的向心力,由此我们知道粒子是做匀速圆周运动的。

三、解决问题

【教师】介绍洛仑兹力演示仪,之后验证大家的猜想。

【教师】先把加速电压调到合适的值,得到一条清晰的电子径迹。此时未加磁场,发现电子径迹是一条直线。然后把励磁电流调到一个合适的值,即加上一个合适的匀强磁场,发现电子径迹是一个圆,从而验证了大家的推理。

【教师】既然带电粒子垂直进入匀强磁场是做匀速圆周运动,那么这个圆周的半径与什么有关呢?请大家推导。(请一个同学到黑板上推导)

【学生】粒子做匀速圆周运动需要的向心力由洛仑兹力提供,可以得到方程:

【教师】由上面推出的结果来看,粒子进入磁场的速度越大;半径越大。磁场越强,半径越小。然后用洛仑兹力演示仪演示:提高加速电压,增大进入磁场的粒子的速度,发现半径果然增大。保持加速电压不变,增大励磁电流使匀强磁场的磁感应强度增大,发现半径果然变小。

【教师】粒子做匀速圆周运动的周期是怎样的呢?请大家推导(请一个同学到黑板上推导)。

【学生】粒子做匀速圆周运动,所以周期T为:

【教师】很好!我们发现,粒子在匀强磁场中做匀速圆周运动的周期与粒子的速度无关,仅由磁感应强度和粒子的比荷决定。

四、规律应用

【应用1】(课本100页例题)一质量为m,电量为q的粒子,从容器下方的小孔S1飘入电势差为U的加速电场。然后让粒子垂直进入磁感应强度为B的匀强磁场中做匀速圆周运动,最后打到照相底片D上(图5)。求:(1)粒子进入磁场时的速率;(2)粒子在磁场中运动的轨道半径。

【学生】加速后粒子的速度大小为v,由动能定理有:

在磁场中粒子做匀速圆周运动,由牛顿第二定律有:

【教师】在学生解答的基础上介绍质谱仪:质量数不同的同位素经同一电场加速后,经同一匀强磁场偏转的轨道半径不一样,从而可以用本仪器测量带电粒子的质量和分析同位素。

【应用2】(1988年全国卷)多级直线加速器:N个长度逐个增大的金属圆筒和一个靶,它们沿轴线排列成一串,如图6所示(图中只画出了六个圆筒,作为示意)。各筒和靶相间地连接到频率为ν、最大电压值为U的正弦交流电源的两端。整个装置放在高真空容器中。圆筒的两底面中心开有小孔。现有一电量为q、质量为m的正离子沿轴线射入圆筒,并将在圆筒间及圆筒与靶间的缝隙处受到电场力的作用而加速(设圆筒内部没有电场)。缝隙的宽度很小,离子穿过缝隙的时间可以不计。已知离子进入第一个圆筒左端的速度为v1,且此时第一、二两个圆筒间的电势差U1-U2=-U。为使打到靶上的离子获得最大能量,各个圆筒的长度应满足什么条件?并求出在这种情况下打到靶上的离子的能量。

解析:为使正离子获得最大能量,要求离子每次穿越缝隙时,前一个圆筒的电势比后一个圆筒的电势高U,这就要求离子穿过每个圆筒的时间都恰好等于交流电的半个周期。由于圆筒内无电场,所以离子在筒内做匀速直线运动。设vn为离子在第n个圆筒内的速度,则有:

其中n=1,2,3…N。

在多级直线加速器中加速粒子,加速电压越高,筒的个数越多,粒子获得的能量就越大,但是速度越大,筒就越长,做起来很困难。所以人们就想到利用磁场做一种占空间较小的回旋加速器。

【应用3】回旋加速器的工作原理如图7所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计。磁感应强度为B的匀强磁场与盒面垂直。紧靠D型盒一侧的中心有粒子源产生粒子,粒子质量为m、电荷量为+q。粒子在加速器中被加速,加速电压为U。设粒子初速度为零,加速过程中不考虑相对论效应和重力作用。求:

(1)粒子能获得的最大动能Em。

(2)粒子每次通过狭缝都得到加速时,所加交变电场的周期T。

(3)粒子从静止开始加速到出口处所需的时间t。

解析:(1)在回旋加速器中,D型盒做定了,粒子在其中做匀速圆周运动的最大轨道半径就确定了,出射粒子的最大速度也就确定了。设粒子出射速度为v,在出射前做匀速圆周运动的半径恰好等于D型盒的半径R,则:

(2)粒子在磁场中每运动半周经过狭缝一次,要使粒子经过狭缝时得到加速,则要求所加交变电场的周期跟粒子做匀速圆周运动的周期一致,这样我们就可以得到所加交变电场的周期T为:

(3)粒子被电场加速一次动能增加qU,根据最大动能可求出粒子被加速的次数,粒子在磁场中运动一个周期被加速两次,从而知道粒子运动的周期次数,进而求出粒子在加速器中运动的时间t。

五、拓展深化

【教师】带电粒子平行进入匀强磁场将做什么运动?

【学生】匀速直线运动。

【教师】理由?

【学生】带电粒子平行进入匀强磁场,不受力的作用。根据牛顿第一定律知道它做匀速直线运动。

【教师】带电粒子与磁感应强度B成任意夹角θ进入,如图8所示,粒子又将做什么运动呢?(有能力的同学可一起和老师讨论,不对全体学生做要求)

【解析】由运动的分解可把速度分解为与B同方向的v2和与B的方向垂直的v1:

在与B平行的方向上因不受力,根据牛顿第一定律可知,该粒子在这一方向保持匀速直线运动,速度大小为v2=vcosθ。

在与B垂直的方向上,因受洛仑兹力作用而做匀速圆周运动。那么该粒子的实际(合)运动是一种等螺距的螺旋运动,就像我们看到的螺杆上的螺纹一样,走过的轨迹像图9的等距螺线管。其中螺距d为:

六、反思总结

本节课从匀速圆周运动、平抛与类平抛运动的力学特征入手,对带电粒子垂直进入匀强磁场做什么运动,做出理论判断,然后用实验验证,再得出规律。之后通过三个例题(比教材上的文字描述,更能让学生理解与接受)完成了教材内容的教学。通过拓展深化,让学有余力的同学得到进一步提高。

整节课在教师和学生的交互活动中完成,明显调动了学生参与思考的积极性,学生的逻辑推理能力得到训练,学生的思维能力得到提高。

《带电粒子在匀强电场中的运动》教学设计 第14篇

关键词:物理问题;等效替代法;实例

一、方法介绍

“等效替代法”是常用的科学思维方法之一。物理学中的“等效替代法”是指在作用效果、物理意义或物理规律等方面相同的前提下将复杂的物理模型、现象、过程等效为简单的物理模型、现象、过程的方法,但最终的结论不变。

二、实例解析

例1.如图1所示,有一半径r很大的光滑圆形轨道位于竖直平面内,竖直平面内有一竖直向上的匀强电场,场强为E,M为最低点,在M点附近的P点(?兹<5°)放一带电量为q(q>0)的小球,求小球由静止开始运动到最低点M时所需的最短时间.

解析:如图1所示小球做的是速率发生变化的圆周运动,利用高中知识牛顿运动定律、动量定理等方法均无法解决此问题,但对小球进行受力分析,结合对比图2中的小球,仔细分析不难发现,在?兹<5°的条件下,图1中的带电小球在运动过程中所受的弹力与图2中小球受的拉力等效,图1中的带电小球所受的重力和电场力的合力与图2中小球所受的重力等效,而图2是一单摆模型,因而图1中的小球运动完全能等效为单摆模型,所以,我们就能得到图1中小球做曲线运动的周期为:

T=2π (1)

小球从P点到M点的最短时间为:

tmin=T= (2)

例2.如图3所示有一水平向右的匀强电场,半径为R的光滑的绝缘圆弧轨道竖直放置,且处于此匀强电场中,一带正电荷、质量为m的小球恰好能在此圆弧轨道内做圆周运动,其中重力是静电力的倍。试问小球在哪两个位置时,小球的速率最小、最大;速率的最小值、最大值分别为多少?

解析:因為小球在运动过程中,无论运动到哪一个位置,小球的重力和电场力的合力都是恒定的,因此带电小球在复合场中的运动与小球在重力场中的运动完全是可以等效的,即复合场中重力和电场力的合力来等效代替重力场中的重力,将复合场中重力和电场力的合力可看作“等效重力”,从而我们可以利用小球在重力场中运动的分析方法来解决此问题。

在重力场中,小球在竖直平面内做圆周运动的临界条件是物体运动到最高点时轨道对小球的压力为零,重力刚好提供向心力,本题中物体所受重力和电场力的合力,即“等效重力”提供向心力,等效重力的大小为:

G有效==mg (1)

方向为:与水平方向间的夹角为53°

∴等效加速度为:g有效=mg (2)

∴小球在等效“重力场”中做圆周运动时的等效“最低点”和等效“最高点”为图5中的M点,N点。

∴小球分别在N、M两点时,小球的速率最小、最大。

设小球在N点的速度大小为vmin,则:

vmin== (3)

小球从“等效最高点”N到“等效最低点”M的过程,由动能定理得:mvmin2+G有效2R=mvmax2 (4)

由(1)(3)(4)三式联立得小球做圆周运动经过“等效最低点”的最大速度大小为:vmax=

以上两例仅是“等效替代法”在解决高中物理问题时较为常见的应用,其实在我们平时的物理教学和学生的学习中,“等效替代法”有着极其广泛的应用,教师、尤其是学生若能用此法分析和解决一些物理问题,会达到化难为易、事半功倍的效果,更重要的是,培养了学生迁移知识、灵活运用知识的能力、提高了他们的物理思维能力。

相关文章
运动会跳绳通讯稿

运动会跳绳通讯稿

运动会跳绳通讯稿(精选6篇)运动会跳绳通讯稿 第1篇跳出健康、跳出风采胶州市第六实验小学举行跳绳比赛活动随着一生哨响,胶州市第六实验...

3
2025-09-23
艺术匠心范文

艺术匠心范文

艺术匠心范文(精选10篇)艺术匠心 第1篇一篇文学作品的优秀,源于作者深邃而独特的见识,源于作者独具匠心的表现技巧,源于作者精准而细腻的...

1
2025-09-23
英文入学申请书范文

英文入学申请书范文

英文入学申请书范文(精选9篇)英文入学申请书范文 第1篇Application Letter for AdmissionDear Sir or Madam,My name is ______...

2
2025-09-23
远程网络控制范文

远程网络控制范文

远程网络控制范文(精选11篇)远程网络控制 第1篇1 智能网络现场控制单元的基本结构远程控制依附于网络技术, 其控制模式是客户服务器模...

1
2025-09-23
银行面试题自我介绍

银行面试题自我介绍

银行面试题自我介绍(精选5篇)银行面试题自我介绍 第1篇在准备自我介绍时,我们要先明白自我介绍的目的是什么?其实,HR让你做自我介绍,...

1
2025-09-23
移动安全生产工作总结

移动安全生产工作总结

移动安全生产工作总结(精选8篇)移动安全生产工作总结 第1篇近年来,分公司始终把安全生产作为头等大事来抓,坚持“安全第一,预防为主”...

1
2025-09-23
一缕阳光的小学作文

一缕阳光的小学作文

一缕阳光的小学作文(精选6篇)一缕阳光的小学作文 第1篇当我们汲汲于富贵,戚戚于贫贱时,何不让一缕阳光走进我们的心里,晕开满心的疲惫...

1
2025-09-23
医院2016年医疗质控工作计划

医院2016年医疗质控工作计划

医院2016年医疗质控工作计划(精选12篇)医院2016年医疗质控工作计划 第1篇冕宁漫水湾友松医院2016年医疗质控工作计划2016年我院为进一步...

2
2025-09-23
付费阅读
确认删除?
回到顶部