正文内容
二氧化碳的制备教案范文
来源:盘古文库
作者:火烈鸟
2025-09-18
1

二氧化碳的制备教案范文第1篇

二氧化钛(Tio2),多用于光触媒、化妆品,能靠紫外线消毒及杀菌,现正广泛开发,将来有机会成为新工业。TiO2可制作成光催化剂,净化空气,消除车辆排放物中25%到45%的氮氧化物,可用于治理PM2.5悬浮颗粒物过高的空气污染。

自20世纪80年代以来,纳米TiO2由于强的吸收和散射紫外线性能,作为优良的紫外线屏蔽剂,用于防晒护肤品、纤维、涂料等领域。本文分别采用沉淀法和溶胶凝胶法制备二氧化钛纳米颗粒,并对其形貌进行检测和分析。 关键词:二氧化钛 沉淀法 溶胶凝胶法 纳米 形貌 Abstract titanium dioxide(TiO2),usually used for photocatalyst、cosmetic,can disinfection and sterilization by ultraviolet light,now it developed widely,maybe become a new industry in the future.Tio2 can be made into photocatalyst,make the air clean,eliminate 25% to 45% oxynitride from vehicle emissions. Can be used for the treatment of PM2.5 particles of highair pollution. Since the 1980s,nanoTiO2 because it strong performance of Absorption and scattering of radiation,as a good ultraviolet screening agent, Used to prevent bask in skin care products, fiber, coating, etc. Precipitation method and sol gel method are used to synthesis fabricate TiO2 nano materials in the article, and test and analyze the morphology of production. Key words:TiO2

Precipitation method sol gel method nanometer morphology

第一章 绪论 1.1 引言

纳米 TiO2在结构、光电和化学性质等方而有许多优异性能,能够把光能转化为电能和化学能,使在通常情况下难于实现或不能实现的反应(水的分解)能够在温和的条件下(不需要高温高压)顺利的进行。纳米 TiO2具有独特的光催化性、优异的颜色效应以及紫外线屏蔽等功能,在能源、环保、建材 、医疗卫生等领域 有重要应用 前景 ,是 一种重要的功能材料。 1.2 二氧化钛的结构

TiO2在自然界中主要存在三种晶体结构:锐钛矿型(图1a)、金红石型(图1b)和板钛矿型,而金红石型和锐钛矿型都具有催化活性。锐钛矿型TiO2为四方晶系,其中每个八面体与周围8个八面体相连接(4个共边,4个共顶角),4个TiO2分子组成一个晶胞。金红石型TiO2也为四方晶系,晶格中心为Ti原子,八面体棱角上为6个氧原子,每个八面体与周围10个八面体相联(其中有两个共边,八个共顶角),两个TiO2分子组成一个晶胞,其八面体畸变程度较锐钛矿要小,对称性不如锐钛矿相,其Ti–Ti键长较锐钛矿小,而Ti-O键长较锐钛矿型大。板钛矿型TiO2为斜方晶系,6个TiO2分子组成一个晶胞。

1.3二氧化钛的应用

1.3.1基于半导体性质和电学特性的应用领域

TiO2是一种多功能性的化工材料,基于其电磁和半导体性能,在电子工业中有

广泛应用,基于其介电性制造高档温度补偿陶瓷电容器、以及热敏、温敏、光敏、压敏、气敏、湿敏等敏感元件。

TiO2气敏元件可用来检测多种气体,包括H

2、Co等可燃性气体和O2。TiO2气敏元件可用作汽车尾气传感器,通过测定汽车尾气中O2含量,可以控制和减少汽车尾气中的CO和NOx的污染,同时提高汽车发动机效率。 1.3.2基于紫外屏蔽特性和可见光透明性的应用领域 1.3.2.1防日晒化妆品

纳米TiO2,无毒、无味,对皮肤无刺激,无致癌危险性,使用安全可靠;对UVA和UVB都有很好的屏蔽作用,且可透过可见光;稳定性好,吸收紫外线后不分解、不变色。因此被广泛用于防晒霜、粉底霜、口红、防晒摩丝等。 1.3.2.2食品包装材料

紫外线易使食品氧化变质,破坏食品中的维生素,降低营养价值。用含0.1~0.5%纳米TiO2的透明塑料薄膜包装食品,既具透明性,又防紫外线。不仅能从外面看清食品,而且能使食品长时间保存不变质。 1.3.2.3透明外用耐久性涂料和特种涂料

当纳米TiO2用于涂料并达到纳米级的分散时,可作为优良的罩光漆,由于其可见光透明性和紫外光屏蔽特性,因而可大大增加其保光、保色及抗老化(耐候性)性能。这种涂料可用于汽车、建筑、木器、家具、文物保护等领域。利用其吸收远红外和抗远红外探测的性能,制造特种涂料用于隐形飞机、隐形军舰等国防工业中。

1.3.3基于光催化性质的应用领域 1.3.3.1光催化合成

利用纳米TiO2优良的光催化活性,在化学工业中可光催化合成NH3,苯乙烯的环氧化等。这方面的工作还处于研究阶段,尚未工业应用。 1.3.3.2在能源领域的应用

利用纳米TiO2的光催化活性,可做成太阳能电池(光电池)将太阳能转变为电能。还可以光催化分解水制氢(氢是一种最清洁、无污染,又便于利用的新能源),将太阳能转变成化学能。目前的问题是光利用率和产率太低,需继续研究解决。

1.3.3.3在环保领域的应用

这是最有希望、最有前途的一个领域。纳米TiO2作为光催化剂,在环保领域中的应用是当前研究的一个重点和热门课题。利用它治理污染,具有能耗低,操作简便,反应条件温和,无二次污染等优点。纳米TiO2用于废气处理,可使工业废气脱硝、脱硫和使CO转化为无害的N

2、CO

2、H2O等,可制造环保用废气转换器。

1.3.4基于颜色效应的应用领域

将纳米TiO2与闪光铝粉和云母钛珠光颜料拼配使用制成的涂料具有随角异色效应,作为金属闪光面漆涂装在小汽车上,将产生富丽雅致的效果。这是纳米TiO2最重要,最有前途的应用领域之一。 1.3.5基于表面超双亲性和表面超疏水性的应用

利用玻璃基体上的纳米TiO2涂膜在紫外光照射下具有表面水油超亲合性,可使表面附着的水滴迅速扩散展开成均匀的水膜,从而防雾、防露,维持高度的透明性,不会影响视线,制成建筑物窗玻璃、车辆挡风玻璃、后视镜、浴室镜子、眼镜镜片,测量仪器的玻璃罩等,能保证车辆交通安全和各种用途玻璃的能见度。

又在氟树脂中加入纳米TiO2后,其表面与水的接触角可达160度,显示出超疏水特性,就如同荷叶上的水珠一样,可使之具有防雪、防水滴、防污等特性,从而在某些领域中具有特殊用途。 1.4合成制备纳米二氧化钛的方法

近年来,伴随着全球环境污染日益严重,纳米半导体光催化剂材料一直是材料学和光催化学研究的热点。 目前 ,比较简单的半导体光催化剂有TiO

2、SnO

2、Fe2O

3、MoO

3、WO

3、PbS、ZnS、ZnO 和CdS 等 ,纳米TiO2因其具有性质稳定、抗光腐蚀性强、耐酸碱腐蚀性强、原料丰富等优点。

目前,制备纳米TiO2粉体的方法有很多,按照所需粉体的形状、结构、尺寸、晶型、用途选用不同的制备方法。根据粉体制备原理的不同,这些方法可分为物理法、化学法和综合法。无论采用何种方法,制备的纳米粉体都应满足以下条件: 表面光洁;粒子的形状及粒径、粒度分布可控;粒子不易团聚;易于收集;热稳 定性好;产率高。

1.4.1物理法

物理法是最早采用的纳米材料制备方法,其方法是采用高能消耗的方式,“强制”材料“细化”得到纳米材料。物理法的优点是产品纯度高。 1.4.1.1气相蒸发沉积法

此法制备纳米TiO2粉体的过程为: 将金属Ti 置于钨舟中,在( 2 ~ 10) 102 Pa 的He 气氛下加热蒸发,从过饱和蒸汽中凝固的细小颗粒被收集到液氮冷却套管上,然后向反应室注入5 103 Pa 的纯氧,使颗粒迅速、完全氧化成TiO2 粉体。利用该方法制备的TiO2纳米粉体是双峰分布,粉体颗粒大小为14 nm。 1.4.1.2蒸发-凝聚法

此法是将将平均粒径为3μm的工业TiO2轴向注入功率为60 kW的高频等离子炉Ar-O2混合等离子矩中,在大约10 000 K的高温下,粗粒子TiO2汽化蒸发,进入冷凝膨胀罐中降压,急冷得到10~50 nm的纳米TiO2。 1.4.2化学法

化学法可以根据反应物的物态,将其划分为液相化学反应法、气相化学反应法和固相反应法。此类方法制造的纳米粉体产量大,粒子直径可控,也可得到纳米管和纳米晶须,同时,该法能方便地对粒子表面进行碳、硅和有机物包覆或修饰处理,使粒子尺寸细小且均匀,性能更加稳定。 1.4.2.1液相化学反应法

该方法是生产各种氧化物微粒的主要方法,是指在均相溶液中,通过各种方式溶质和溶剂分离,溶质形成形状、大小一定的颗粒,得到所需粉末的前驱体,加热分解后得到纳米颗粒的方法。液相化学法制备纳米TiO2又分为溶胶-凝胶法、水解法、沉淀法、微乳液法等。

溶胶-凝胶法( Sol - gel 法) 是以钛醇盐为原料,在无水乙醇溶剂中与水发生反应,经过水解与缩聚过程而逐渐凝胶化,再经干燥、烧结处理即可得到纳米TiO2粒子。此法制得的产品纯度高、颗粒细、尺寸均匀、干燥后颗粒自身的烧结温度低,但凝胶颗粒之间烧结性差,产物干燥时收缩大。

水解法是以TiCl4( 化学纯) 作为前驱体,在冰水浴下强力搅拌,将一定量的TiCl4滴入蒸馏水中,将溶有硫酸铵和浓盐酸的水溶液滴加到所得的TiCl4水溶 5

液中搅拌,混合过程中温度控制在15 ℃,此时,TiCl4的浓度为1.1 mol /L,Ti4 + /H+ = 15,Ti4 + /SO2 -4 = 1 /2。将混合物升温至95 ℃并保温1 h 后,加入浓氨水,pH 值为6 左右,冷却至室温,陈化12 h 过滤,用蒸馏水洗去Cl-后,用酒精洗涤3次,过滤,室温条件下将沉淀真空干燥,或将真空干燥后的粉体于不同温度下煅烧,得到不同形貌的TiO2粉体。利用该方法制备的TiO2粉体,粒径仅为7 nm,且晶粒大小均匀。在制备过程中探讨了煅烧温度对粉体的影响,水解反应机理、水解温度对结晶态的影响,硫酸根离子对粉体性能的影响等问题。

沉淀法是向金属盐溶液中加入某种沉淀剂,通过化学反应使沉淀剂在整个溶液中缓慢地析出,从而使金属离子共沉淀下来,再经过过滤、洗涤、干燥、焙烧而得到粒度小分布窄、团聚少的纳米材料。赵旭等采用均相沉淀法,以尿素为沉淀剂,控制反应液钛离子浓度、稀硫酸及表面活性剂十二烷基苯磺酸钠的用量,制备的粒子为20 ~ 30 μm 球型TiO2粒子,该粒子晶体粒径在纳米范围内5 ~ 208 nm。

微乳液法是近年来发展起来的一种制备纳米微粒的有效方法。微乳液是利用两种互不相溶的溶剂在表面活性剂的作用下形成一个均匀的乳液,从乳液中析出固相制备纳米材料的方法。乳液法可使成核、生长、聚结、团聚等过程局限在一个微小的球形液滴内形成一个球形颗粒,避免了颗粒之间进一步团聚。 1.4.2.2 气相化学反应法

气相热解法。该方法是在真空或惰性气氛下用各种高温源将反应区加热到所需温度,然后导入气体反应物或将反应物溶液以喷雾法导入,溶液在高温条件下挥发后发生热分解反应,生成氧化物。1992 年日本Tohokuoniuemi - tu 采用高频感应喷雾热解法以钛氯化物( 如TiCl4) 为原料制备得到四方晶系纳米TiO2 粉末。

气相水解法。日本曹达公司和出光产公司制备纳米氧化钛采用的技术方法主要是以氮气、氦气或空气等作载体的条件下,把钛醇盐蒸汽和水蒸气分别导入反应器的反应区,在有效反应区内进行瞬间混合,同时快速完成水解反应,以反应温度来调节并控制纳米TiO2的粒径和粒子形状。此制备工艺可获得平均 6

粒径为10 ~ 150 nm,比表面积为50 ~ 300 m2 /g 的非晶型纳米TiO2。该工艺的特点是操作温度较低,能耗小,对材质纯度要求不是很高,并在工业化生产方面容易实现续化生产。其主要化学反应为:

nTi( OR)4( g) + 4nH2O( g) nTi( OH)4( S) + 4nROH( g)

nTi( OH)4( S) nTiO2H2O( s) + nH2O( g)

nTiO2H2O( s) nTiO2( s) + nH2O( g) 1.4.3综合法 1.4.3.1 激光CVD 法

该方法集合了物理法和化学法的优点,在80 年代由美国的Haggery 提出,目前,J David Casey 用激光CVD 法已合成出了具有颗粒粒径小、不团聚、粒1.4.3.2 等离子CVD 法

该方法是利用等离子体产生的超高温激发气体发生反应,同时利用等离子体高温区与周围环境巨大的温度梯度,通过急冷作用得到纳米颗粒。该方法有两个特点:

( 1) 产生等离子时没有引入杂质,因此生成的纳米粒子纯度较高; ( 2) 等离子体所处空间大,气体流速慢,致使反应物在等离子空间停留时间长,物质可以充分加热和反应。 1.5本课题研究的目的和意义

如上所述,纳米二氧化钛以其特殊的性能和广阔的发展前景引起科学家们的广泛关注。以其独特的表面效应、小尺寸效 应、量子尺寸效应和宏观量子效应等性质,而呈现出许多奇异的物理、化学性质,使其在众多领域具有特别重要的应用价值和广阔的发展前景。纳米二氧化钛是20世纪80年代末发展起来的一种新型无机化工材料,它具有比表面积大、磁性强、光吸收性好、表面活性大、热导性好、分散性好等性能,纳米TiO2是当前应用前景最为广泛的一种纳米材料, 具有很强的吸收紫外线能力, 奇特的颜色效应, 较好的热稳定性, 化学稳定性和优良的光学、电学及力学等方面的特性。其中锐钛矿型具有较高的催化效率, 金红石型结构稳定且具有较强的覆盖力、着色力和紫外线吸收能力。因而倍受国内外研究学者的关注。

纳米TiO2具有许多优异的性能,不仅具有优异的颜料特性高遮盖率、高消 7

色力、高光泽度、高白度和强的耐候性外,还具有特殊的力学、光、电、磁功能;更具有高透明性、紫外线吸收能力以及光催化活性、随角异色效应。特别是随着环境污染的日益严重,纳米TiO2高效的光催化降解污染物的能力而成为当前最为活跃的研究热点之一。而其独特的颜色效应、光催化作用及紫外线屏蔽等功能,在汽车工业、防晒化妆品、废水处理、杀菌、环保等方面一经面世就备受青睐。

今年来随着各种技术的发展,纳米TiO2已应用在多种领域中,但由于其在环境治理中有其独特的优点,所以其在环保领域会更有大发展。

众所周知,二氧化钛的组成结构、尺寸大小和形貌特征等因素对其性质影响较大,实现二氧化钛的应用不仅需要充分发挥其本征性质,还可以通过尺寸和形貌控制对其性质进行调控。本文主要是研究使用不同制备方法,在不同条件下制备不同形貌的纳米二氧化钛。 第二章 原材料及表征 2.1试剂及仪器 2.1.1主要试剂

本实验中,所使用的主要试剂如表2.1所示

所有试剂均未经进一步的处理,实验所用水为蒸馏。 2.1.2主要实验仪器

表2.2所示是本实验中所用主要仪器设备及测试所用的大型仪器。 2.2样品的表征

扫描电子显微镜的基本结构如图2.1所示,扫描电子显微镜以炽热灯丝所发射的电子为光源,灯丝发射的电子束在通过栅极之后,聚焦成电子束。在加速电压作用下,通过三个电磁透镜组成的电子光学系统,之后汇聚成直径约几十个埃的电子束照射到被观测样品表面。电子束与样品作用,产生不同的电子其其他射线,如二次电子、背散射电子、透射电子、吸收电子及X射线等。这些信号在经收集器吸收后,传输到放大器,经放大器放大,送至显像管,显示出样品的形貌。在扫描电子显微镜表征样品表面形貌时,用来成像的信号主要是二次电子,所谓二次电子,就是指电子束光源与样品作用,样品中的价电子受激发而脱离出来的电子。本实验中,采用中国科仪公司的KYKY-2800B型的扫描 8

电子显微镜对对样品的表面形貌进行表征,扫描电子显微镜的加速电压为20KV。

二氧化碳的制备教案范文第2篇

二氧化钛(Tio2),多用于光触媒、化妆品,能靠紫外线消毒及杀菌,现正广泛开发,将来有机会成为新工业。TiO2可制作成光催化剂,净化空气,消除车辆排放物中25%到45%的氮氧化物,可用于治理PM2.5悬浮颗粒物过高的空气污染。

自20世纪80年代以来,纳米TiO2由于强的吸收和散射紫外线性能,作为优良的紫外线屏蔽剂,用于防晒护肤品、纤维、涂料等领域。本文分别采用沉淀法和溶胶凝胶法制备二氧化钛纳米颗粒,并对其形貌进行检测和分析。 关键词:二氧化钛 沉淀法 溶胶凝胶法 纳米 形貌 Abstract titanium dioxide(TiO2),usually used for photocatalyst、cosmetic,can disinfection and sterilization by ultraviolet light,now it developed widely,maybe become a new industry in the future.Tio2 can be made into photocatalyst,make the air clean,eliminate 25% to 45% oxynitride from vehicle emissions. Can be used for the treatment of PM2.5 particles of highair pollution. Since the 1980s,nanoTiO2 because it strong performance of Absorption and scattering of radiation,as a good ultraviolet screening agent, Used to prevent bask in skin care products, fiber, coating, etc. Precipitation method and sol gel method are used to synthesis fabricate TiO2 nano materials in the article, and test and analyze the morphology of production. Key words:TiO2

Precipitation method sol gel method nanometer morphology

第一章 绪论 1.1 引言

纳米 TiO2在结构、光电和化学性质等方而有许多优异性能,能够把光能转化为电能和化学能,使在通常情况下难于实现或不能实现的反应(水的分解)能够在温和的条件下(不需要高温高压)顺利的进行。纳米 TiO2具有独特的光催化性、优异的颜色效应以及紫外线屏蔽等功能,在能源、环保、建材 、医疗卫生等领域 有重要应用 前景 ,是 一种重要的功能材料。 1.2 二氧化钛的结构

TiO2在自然界中主要存在三种晶体结构:锐钛矿型(图1a)、金红石型(图1b)和板钛矿型,而金红石型和锐钛矿型都具有催化活性。锐钛矿型TiO2为四方晶系,其中每个八面体与周围8个八面体相连接(4个共边,4个共顶角),4个TiO2分子组成一个晶胞。金红石型TiO2也为四方晶系,晶格中心为Ti原子,八面体棱角上为6个氧原子,每个八面体与周围10个八面体相联(其中有两个共边,八个共顶角),两个TiO2分子组成一个晶胞,其八面体畸变程度较锐钛矿要小,对称性不如锐钛矿相,其Ti–Ti键长较锐钛矿小,而Ti-O键长较锐钛矿型大。板钛矿型TiO2为斜方晶系,6个TiO2分子组成一个晶胞。

1.3二氧化钛的应用

1.3.1基于半导体性质和电学特性的应用领域

TiO2是一种多功能性的化工材料,基于其电磁和半导体性能,在电子工业中有

广泛应用,基于其介电性制造高档温度补偿陶瓷电容器、以及热敏、温敏、光敏、压敏、气敏、湿敏等敏感元件。

TiO2气敏元件可用来检测多种气体,包括H

2、Co等可燃性气体和O2。TiO2气敏元件可用作汽车尾气传感器,通过测定汽车尾气中O2含量,可以控制和减少汽车尾气中的CO和NOx的污染,同时提高汽车发动机效率。 1.3.2基于紫外屏蔽特性和可见光透明性的应用领域 1.3.2.1防日晒化妆品

纳米TiO2,无毒、无味,对皮肤无刺激,无致癌危险性,使用安全可靠;对UVA和UVB都有很好的屏蔽作用,且可透过可见光;稳定性好,吸收紫外线后不分解、不变色。因此被广泛用于防晒霜、粉底霜、口红、防晒摩丝等。 1.3.2.2食品包装材料

紫外线易使食品氧化变质,破坏食品中的维生素,降低营养价值。用含0.1~0.5%纳米TiO2的透明塑料薄膜包装食品,既具透明性,又防紫外线。不仅能从外面看清食品,而且能使食品长时间保存不变质。 1.3.2.3透明外用耐久性涂料和特种涂料

当纳米TiO2用于涂料并达到纳米级的分散时,可作为优良的罩光漆,由于其可见光透明性和紫外光屏蔽特性,因而可大大增加其保光、保色及抗老化(耐候性)性能。这种涂料可用于汽车、建筑、木器、家具、文物保护等领域。利用其吸收远红外和抗远红外探测的性能,制造特种涂料用于隐形飞机、隐形军舰等国防工业中。

1.3.3基于光催化性质的应用领域 1.3.3.1光催化合成

利用纳米TiO2优良的光催化活性,在化学工业中可光催化合成NH3,苯乙烯的环氧化等。这方面的工作还处于研究阶段,尚未工业应用。 1.3.3.2在能源领域的应用

利用纳米TiO2的光催化活性,可做成太阳能电池(光电池)将太阳能转变为电能。还可以光催化分解水制氢(氢是一种最清洁、无污染,又便于利用的新能源),将太阳能转变成化学能。目前的问题是光利用率和产率太低,需继续研究解决。

1.3.3.3在环保领域的应用

这是最有希望、最有前途的一个领域。纳米TiO2作为光催化剂,在环保领域中的应用是当前研究的一个重点和热门课题。利用它治理污染,具有能耗低,操作简便,反应条件温和,无二次污染等优点。纳米TiO2用于废气处理,可使工业废气脱硝、脱硫和使CO转化为无害的N

2、CO

2、H2O等,可制造环保用废气转换器。

1.3.4基于颜色效应的应用领域

将纳米TiO2与闪光铝粉和云母钛珠光颜料拼配使用制成的涂料具有随角异色效应,作为金属闪光面漆涂装在小汽车上,将产生富丽雅致的效果。这是纳米TiO2最重要,最有前途的应用领域之一。 1.3.5基于表面超双亲性和表面超疏水性的应用

利用玻璃基体上的纳米TiO2涂膜在紫外光照射下具有表面水油超亲合性,可使表面附着的水滴迅速扩散展开成均匀的水膜,从而防雾、防露,维持高度的透明性,不会影响视线,制成建筑物窗玻璃、车辆挡风玻璃、后视镜、浴室镜子、眼镜镜片,测量仪器的玻璃罩等,能保证车辆交通安全和各种用途玻璃的能见度。

又在氟树脂中加入纳米TiO2后,其表面与水的接触角可达160度,显示出超疏水特性,就如同荷叶上的水珠一样,可使之具有防雪、防水滴、防污等特性,从而在某些领域中具有特殊用途。 1.4合成制备纳米二氧化钛的方法

近年来,伴随着全球环境污染日益严重,纳米半导体光催化剂材料一直是材料学和光催化学研究的热点。 目前 ,比较简单的半导体光催化剂有TiO

2、SnO

2、Fe2O

3、MoO

3、WO

3、PbS、ZnS、ZnO 和CdS 等 ,纳米TiO2因其具有性质稳定、抗光腐蚀性强、耐酸碱腐蚀性强、原料丰富等优点。

目前,制备纳米TiO2粉体的方法有很多,按照所需粉体的形状、结构、尺寸、晶型、用途选用不同的制备方法。根据粉体制备原理的不同,这些方法可分为物理法、化学法和综合法。无论采用何种方法,制备的纳米粉体都应满足以下条件: 表面光洁;粒子的形状及粒径、粒度分布可控;粒子不易团聚;易于收集;热稳 定性好;产率高。

1.4.1物理法

物理法是最早采用的纳米材料制备方法,其方法是采用高能消耗的方式,“强制”材料“细化”得到纳米材料。物理法的优点是产品纯度高。 1.4.1.1气相蒸发沉积法

此法制备纳米TiO2粉体的过程为: 将金属Ti 置于钨舟中,在( 2 ~ 10) 102 Pa 的He 气氛下加热蒸发,从过饱和蒸汽中凝固的细小颗粒被收集到液氮冷却套管上,然后向反应室注入5 103 Pa 的纯氧,使颗粒迅速、完全氧化成TiO2 粉体。利用该方法制备的TiO2纳米粉体是双峰分布,粉体颗粒大小为14 nm。 1.4.1.2蒸发-凝聚法

此法是将将平均粒径为3μm的工业TiO2轴向注入功率为60 kW的高频等离子炉Ar-O2混合等离子矩中,在大约10 000 K的高温下,粗粒子TiO2汽化蒸发,进入冷凝膨胀罐中降压,急冷得到10~50 nm的纳米TiO2。 1.4.2化学法

化学法可以根据反应物的物态,将其划分为液相化学反应法、气相化学反应法和固相反应法。此类方法制造的纳米粉体产量大,粒子直径可控,也可得到纳米管和纳米晶须,同时,该法能方便地对粒子表面进行碳、硅和有机物包覆或修饰处理,使粒子尺寸细小且均匀,性能更加稳定。 1.4.2.1液相化学反应法

该方法是生产各种氧化物微粒的主要方法,是指在均相溶液中,通过各种方式溶质和溶剂分离,溶质形成形状、大小一定的颗粒,得到所需粉末的前驱体,加热分解后得到纳米颗粒的方法。液相化学法制备纳米TiO2又分为溶胶-凝胶法、水解法、沉淀法、微乳液法等。

溶胶-凝胶法( Sol - gel 法) 是以钛醇盐为原料,在无水乙醇溶剂中与水发生反应,经过水解与缩聚过程而逐渐凝胶化,再经干燥、烧结处理即可得到纳米TiO2粒子。此法制得的产品纯度高、颗粒细、尺寸均匀、干燥后颗粒自身的烧结温度低,但凝胶颗粒之间烧结性差,产物干燥时收缩大。

水解法是以TiCl4( 化学纯) 作为前驱体,在冰水浴下强力搅拌,将一定量的TiCl4滴入蒸馏水中,将溶有硫酸铵和浓盐酸的水溶液滴加到所得的TiCl4水溶 5

液中搅拌,混合过程中温度控制在15 ℃,此时,TiCl4的浓度为1.1 mol /L,Ti4 + /H+ = 15,Ti4 + /SO2 -4 = 1 /2。将混合物升温至95 ℃并保温1 h 后,加入浓氨水,pH 值为6 左右,冷却至室温,陈化12 h 过滤,用蒸馏水洗去Cl-后,用酒精洗涤3次,过滤,室温条件下将沉淀真空干燥,或将真空干燥后的粉体于不同温度下煅烧,得到不同形貌的TiO2粉体。利用该方法制备的TiO2粉体,粒径仅为7 nm,且晶粒大小均匀。在制备过程中探讨了煅烧温度对粉体的影响,水解反应机理、水解温度对结晶态的影响,硫酸根离子对粉体性能的影响等问题。

沉淀法是向金属盐溶液中加入某种沉淀剂,通过化学反应使沉淀剂在整个溶液中缓慢地析出,从而使金属离子共沉淀下来,再经过过滤、洗涤、干燥、焙烧而得到粒度小分布窄、团聚少的纳米材料。赵旭等采用均相沉淀法,以尿素为沉淀剂,控制反应液钛离子浓度、稀硫酸及表面活性剂十二烷基苯磺酸钠的用量,制备的粒子为20 ~ 30 μm 球型TiO2粒子,该粒子晶体粒径在纳米范围内5 ~ 208 nm。

微乳液法是近年来发展起来的一种制备纳米微粒的有效方法。微乳液是利用两种互不相溶的溶剂在表面活性剂的作用下形成一个均匀的乳液,从乳液中析出固相制备纳米材料的方法。乳液法可使成核、生长、聚结、团聚等过程局限在一个微小的球形液滴内形成一个球形颗粒,避免了颗粒之间进一步团聚。 1.4.2.2 气相化学反应法

气相热解法。该方法是在真空或惰性气氛下用各种高温源将反应区加热到所需温度,然后导入气体反应物或将反应物溶液以喷雾法导入,溶液在高温条件下挥发后发生热分解反应,生成氧化物。1992 年日本Tohokuoniuemi - tu 采用高频感应喷雾热解法以钛氯化物( 如TiCl4) 为原料制备得到四方晶系纳米TiO2 粉末。

气相水解法。日本曹达公司和出光产公司制备纳米氧化钛采用的技术方法主要是以氮气、氦气或空气等作载体的条件下,把钛醇盐蒸汽和水蒸气分别导入反应器的反应区,在有效反应区内进行瞬间混合,同时快速完成水解反应,以反应温度来调节并控制纳米TiO2的粒径和粒子形状。此制备工艺可获得平均 6

粒径为10 ~ 150 nm,比表面积为50 ~ 300 m2 /g 的非晶型纳米TiO2。该工艺的特点是操作温度较低,能耗小,对材质纯度要求不是很高,并在工业化生产方面容易实现续化生产。其主要化学反应为:

nTi( OR)4( g) + 4nH2O( g) nTi( OH)4( S) + 4nROH( g)

nTi( OH)4( S) nTiO2H2O( s) + nH2O( g)

nTiO2H2O( s) nTiO2( s) + nH2O( g) 1.4.3综合法 1.4.3.1 激光CVD 法

该方法集合了物理法和化学法的优点,在80 年代由美国的Haggery 提出,目前,J David Casey 用激光CVD 法已合成出了具有颗粒粒径小、不团聚、粒1.4.3.2 等离子CVD 法

该方法是利用等离子体产生的超高温激发气体发生反应,同时利用等离子体高温区与周围环境巨大的温度梯度,通过急冷作用得到纳米颗粒。该方法有两个特点:

( 1) 产生等离子时没有引入杂质,因此生成的纳米粒子纯度较高; ( 2) 等离子体所处空间大,气体流速慢,致使反应物在等离子空间停留时间长,物质可以充分加热和反应。 1.5本课题研究的目的和意义

如上所述,纳米二氧化钛以其特殊的性能和广阔的发展前景引起科学家们的广泛关注。以其独特的表面效应、小尺寸效 应、量子尺寸效应和宏观量子效应等性质,而呈现出许多奇异的物理、化学性质,使其在众多领域具有特别重要的应用价值和广阔的发展前景。纳米二氧化钛是20世纪80年代末发展起来的一种新型无机化工材料,它具有比表面积大、磁性强、光吸收性好、表面活性大、热导性好、分散性好等性能,纳米TiO2是当前应用前景最为广泛的一种纳米材料, 具有很强的吸收紫外线能力, 奇特的颜色效应, 较好的热稳定性, 化学稳定性和优良的光学、电学及力学等方面的特性。其中锐钛矿型具有较高的催化效率, 金红石型结构稳定且具有较强的覆盖力、着色力和紫外线吸收能力。因而倍受国内外研究学者的关注。

纳米TiO2具有许多优异的性能,不仅具有优异的颜料特性高遮盖率、高消 7

色力、高光泽度、高白度和强的耐候性外,还具有特殊的力学、光、电、磁功能;更具有高透明性、紫外线吸收能力以及光催化活性、随角异色效应。特别是随着环境污染的日益严重,纳米TiO2高效的光催化降解污染物的能力而成为当前最为活跃的研究热点之一。而其独特的颜色效应、光催化作用及紫外线屏蔽等功能,在汽车工业、防晒化妆品、废水处理、杀菌、环保等方面一经面世就备受青睐。

今年来随着各种技术的发展,纳米TiO2已应用在多种领域中,但由于其在环境治理中有其独特的优点,所以其在环保领域会更有大发展。

众所周知,二氧化钛的组成结构、尺寸大小和形貌特征等因素对其性质影响较大,实现二氧化钛的应用不仅需要充分发挥其本征性质,还可以通过尺寸和形貌控制对其性质进行调控。本文主要是研究使用不同制备方法,在不同条件下制备不同形貌的纳米二氧化钛。 第二章 原材料及表征 2.1试剂及仪器 2.1.1主要试剂

本实验中,所使用的主要试剂如表2.1所示

所有试剂均未经进一步的处理,实验所用水为蒸馏。 2.1.2主要实验仪器

表2.2所示是本实验中所用主要仪器设备及测试所用的大型仪器。 2.2样品的表征

扫描电子显微镜的基本结构如图2.1所示,扫描电子显微镜以炽热灯丝所发射的电子为光源,灯丝发射的电子束在通过栅极之后,聚焦成电子束。在加速电压作用下,通过三个电磁透镜组成的电子光学系统,之后汇聚成直径约几十个埃的电子束照射到被观测样品表面。电子束与样品作用,产生不同的电子其其他射线,如二次电子、背散射电子、透射电子、吸收电子及X射线等。这些信号在经收集器吸收后,传输到放大器,经放大器放大,送至显像管,显示出样品的形貌。在扫描电子显微镜表征样品表面形貌时,用来成像的信号主要是二次电子,所谓二次电子,就是指电子束光源与样品作用,样品中的价电子受激发而脱离出来的电子。本实验中,采用中国科仪公司的KYKY-2800B型的扫描 8

电子显微镜对对样品的表面形貌进行表征,扫描电子显微镜的加速电压为20KV。

二氧化碳的制备教案范文第3篇

电化学方法是利用外加电场作用, 在特定的电化学反应器内, 通过一系列设计的化学反应、电化学过程, 制备出氧化铝的前驱体, 在不同温度下煅烧得到不同晶型的纳米Al2O3。

2实验步骤

2.1以三氯化铝化学纯作为前驱体, 将三氯化铝溶于蒸馏水中, 配成一定浓度的三氯化铝溶液。

2.2将制好的溶液置于电解池中, 磁力搅拌, 在一定初始电压和初始电流密度下, 插人惰性电极电解。

2.3待电流密度降低到一定值时, 溶液为p H=3时得到一清亮的粘滞胶液。

2.4滴加氨水使胶液凝胶化, 用蒸馏水和无水乙醇各洗涤三次, 待除去Cl-离子。

2.5将产品进行冷冻干燥, 或将干燥后的粉体在不同温度下锻烧 (升温速度10℃/min) , 得到不同形态的氧化铝粉体。

2.6在以上实验基础上样品的X射线衍射 (XRD) 测试、激光粒度分析仪测定等表征, 并比较结果。

3实验参数研究及其影响

3.1反应浓度

考查不同浓度的反应溶液对纳米氧化铝的粒径的影响。

3.1.1配制不同浓度的三氯化铝溶液与按比例配制的不同浓度的氨水按步骤添加反应。

3.1.2实验操作与实验现象

3.1.3实验结果

由实验可得, 浓度~的电解溶液适合制备纳米氧化铝。

3.2初始电压大小

3.2.1和上述方法一样, 先配制0.5mol/L的三氯化铝溶液500ml, 每次量取50ml进行实验, 电解浓度为0.5mol/L, 电解时间为1h, 电解p H值为3, 滴加氨水量的比例为1:3, 考查不同的初始电压大小对纳米氧化铝的粒径的影响。

3.2.2实验结果及影响原因

实验可得, 制备纳米氧化铝的适合电压为13~16V。

3.3电解时间

3.3.1和上述方法一样, 每次取已配制好的0.5mol/L的三氯化铝溶液50ml, 电解浓度为0.5mol/L, 初始电压为15V, 电解p H值为3, 滴加氨水量的比例为1:3, 考查不同的电解时间长短对纳米氧化铝的粒径的影响如下:

电解时间:1.5h, 实验现象:粒径较大, 产率低;

电解时间:0.5h, 实验现象:粒径较小, 产率较高;

电解时间:1h, 实验现象:粒径较大, 产率低。

3.3.2实验结果及影响原因

由实验分析得:电解时间过短, 溶液没有电解完全, 形成的纳米氧化铝含量过少。电解时间较长, 使得电解更完全, 形成的凝胶更加粘稠, 纳米粒径小, 产率高。11.5h

实验可得, 溶液电解时间为1~1.5h的中间产物粒径小, 产率高。

3.3煅烧时间和温度

考查煅烧时间和温度的不同对纳米氧化铝的粒径的影响。浓度为0.4~0.6mol/L的三氯化铝溶液、电解电压为13~16V、电解时间为1~1.5h、滴加氨水量比例为1:2.5~1:3、用离心洗涤的方法所得的中间产物在最佳反应条件下进行煅烧和测量。

经热处理后, 粉体粒径有一定程度的增大;经500℃煅烧2h之后, 粉体粒径有一定增大, 并出现了较多团聚体;经950℃处理1h, 粉体粒径进一步增大。煅烧完毕后, 还需进行研磨, 否则粒径大, 达不到预想的结果。

4结语

4.1通过条件实验, 找到电化学制备纳米氧化铝的最佳工艺条件是:

反应浓度:0.4~0.6mol/L;初始电压:13~16V;电解时间:1~1.5h;煅烧温度和时间:500℃2h、950℃1h。

4.2实验表明:电化学制备的纳米氧化铝的粒径大小要比其他的制备方法所得的粒径要细小, 方法简单且容易收集, 产率较高, 因此各个方面的性能也有明显的提高。

4.3以分析纯Al Cl36H2O为原料, 采用电解三氯化铝溶液制备氧化铝溶胶, 经冷冻干燥制备了氧化铝的纳米粉体在500℃和950℃分别锻烧2h和1h, 得到了平均粒径为20~60nm的纳米Al2O3。

摘要:本文探究电化学法制备纳米氧化铝的各个反应参数, 确定最适合的反应条件。

二氧化碳的制备教案范文第4篇

目前纳米氧化铜的制备方法以固相法和液相法为主, 近年来, 又出现了很多制备纳米氧化铜的新方法, 如:溶胶凝胶法、络合沉淀法、界面沉淀法、水热法、微乳液法、激光蒸凝法、回流沉淀法、电化学法等。本文将对这些新的制备方法以及应用情况进行综述。

1 纳米氧化铜的制备方法

1.1 溶胶凝胶法

溶胶凝胶法又称胶体化学法, 包括金属醇盐与非金属醇盐两种方法。其基本步骤是:在一定条件下使反应物水解成溶胶, 此后进一步合成凝胶并干燥、热处理后制得所需要的纳米粒子。2002年Corrie L等成功采用了改进溶胶凝胶法制备了粒径7nm~9nm、比表面积120~136m2/g的Cu O球形颗粒。该方法需要无水乙醇作溶剂, 成本相对较高, 但设备简单、所得产物颗粒细小, 具有一定的工业潜力。利用溶胶凝胶法, 结合超临界干燥技术制备纳米Cu O粉体的基本步骤为:将配好的铜盐溶液 (如Cu (N03) 2) 溶于无水乙醇中, 将铜盐的乙醇溶液放人高压反应釜中, 程序升温并控制压力 (温度和压力应分别高于乙醇的临界温度243℃和临界压力6.38MPa) , 保温保压一段时间;然后缓慢放气, 再通保护气 (N2) 自然冷却至室温, 便制得黑色蓬松的纳米Cu O粉末。利用这种方法可得到粒度分布均匀、无明显团聚、颗粒平均尺寸为10nm的Cu O粒子。

1.2 络合沉淀法

络合沉淀法是通过铜盐先与络合剂生成络合物, 再与沉淀剂反应得到前驱体, 后经热处理得到纳米氧化铜。主要合成方法是先将Cu (NO3) 2配制成溶液, 在一定温度和充分搅拌的情况下, 缓慢滴加络合剂, 逐步生成络铜化物, 然后在不断搅拌的情况下滴加沉淀剂, 反应完全后抽虑, 洗涤沉淀, 沉淀先用蒸馏水、再用乙醇洗涤, 后经80℃真空干燥2h, 400℃热处理2h即可得到纳米氧化铜。

1.3 水热法

水热法又称热液法, 属于液相化学的范畴, 是指在高温高压下一些氢氧化物在水中的溶解度大于对应的氧化物在水中的溶解度, 因此氢氧化物溶解于水中的同时氧化物析出的方法。水热法的特点是生产成本低、粒子纯度高、分散性好、晶型好且可控制。

1.4 微乳液法

微乳液法是指利用两种互不相容的溶剂在表面活性剂的作用下形成一个均匀的乳液, 在较小的微区内控制胶粒形核和生长, 从乳液中析出固相制备纳米材料的方法。微乳液通常是由表面活性剂、助表面活性剂 (通常为醇类) 、油 (通常为碳氢化合物) 、水 (或电解质水溶液) 组成的透明的各向同性的热力学稳定体系。微乳液法制备的氧化铜纳米粒子粒度小、可控制, 反应条件容易实现, 但所消耗的表面活性剂及溶剂的量很多, 成本较高, 而且体系的选择比较困难, 操作条件要求苛刻。

1.5 激光蒸凝法

激光蒸凝法采用激光作为热源, 使铜盐分解蒸发后冷凝形成纳米粒子。其步骤为:反应物吸收激光的能量快速气化, 使其化学键发生断裂, 进而反应形成纳米粒子。其制备过程是将被聚焦后的激光束直接照射到反应器中圆柱状的固态醋酸铜靶材上, 醋酸铜吸收激光升温、分解蒸发, 蒸汽迅速降温冷凝成纳米粒子, 随载气进入捕集器中被收集得到, 激光蒸凝法反应时间短, 速度快, 纳米粒子分散性好, 粒径小、分布均匀且几乎呈单一球形, 反应可控, 工艺简单且可连续进行, 产量大, 生产成本较低, 具有良好的工业应用前景。

1.6 回流沉淀法

回流沉淀法是指采用普通或微波加热沸腾回流的方式制备纳米颗粒。主要步骤为:取一定量的硝酸铜加水溶解后加碱调节至预定p H值后, 搅拌并加热沸腾回流1小时后得到黑褐色沉淀物, 趁热过滤并用蒸馏水洗涤后于烘箱中80℃干燥5h以上即可得到黑褐色粉末。

1.7 电化学法

包括电解金属直接水解法和辅助电极电沉积法。周幸福等采用第一种方法制备纳米氧化铜, 得到平均粒径为10nm的球形单分散结构的颗粒, 与传统化学方法相比, 该方法低成本、污染少、简单有效、无团聚、纯度高。王积森等首次提出以铝箔代替恒电位/电流仪惰性电极作为基体, 采用辅助电极电沉积法制备了氧化铜纳米颗粒, 其以酸溶液调节硫酸铜和氯化钾混合溶液p H值为4.5~5.5, 将恒电位/电流仪的三个电极浸入硫酸铜溶液中, 在133mv相对电压下沉积20min, 铝箔上出现红色氧化铜颗粒, 将其放入氢氧化钠溶液中溶解5h后取出, 洗涤、干燥后400℃热处理1小时即可得到纳米氧化铜。此方法得到平均粒径为50nm、无明显团聚的氧化铜微球, 该方法合成工艺简单、利用率高、污染少, 易实现工业化。

2 纳米氧化铜的应用

纳米氧化铜可以作为催化剂直接应用于化工行业, 如催化高氯酸铵的热分解, 催化一氧化碳、乙醇、乙酸乙酯等挥发性物质的完全分解等, 也可以用于传感材料等领域。文献报道了纳米氧化铜粉体催化高氯酸铵的热分解过程, 结果表明, 纳米氧化铜催化性能很高, 不同微结构的纳米氧化铜均能强烈催化高氯酸铵的分解, 特别是粒径较小、分散较好的纳米氧化铜能使高氯酸铵在低温段的分解由30%增至46%。纳米粒子因高活性、高比表面、特异物性和极度微小性等使之成为在传感器方面最有前途的材料之一, 它对外界环境如温度、光、湿气等十分敏感, 外界环境的改变会立即引起表面或界面离子价态和电子运输的变化, 从而大大提高传感器的响应速度和灵敏度。氧化铜因能非常有效地催化CO和有机气体氧化成CO2, 所以用它作为其它材料 (如Sn O2) 制成的传感器的包覆材料, 改进传感器的选择性, 可大大提高传感器对CO等气体的灵敏度。研究结果表明, 在传感器外包覆5nm~30nm的氧化铜膜可大大提高传感器对CO和有机气体的选择性。

摘要:综述了纳米氧化铜制备的各种方法, 并对各种方法的优缺点进行了分析, 同时简要介绍了纳米氧化铜在催化和传感器方面的应用。

关键词:纳米氧化铜,制备方法,应用

参考文献

[1] 洪伟良, 等.纳米CuO的制备及其对热分解特性的影响[J].推进技术, 2001, 22 (3) :254.

[2] 夏晓红, 贾志杰, 等.纳米CuO的制备研究[J].材料科学与工程学报, 2003, 21 (2) :200.

[3] 贾殿赠.一步室温固相化学反应法合成CuO纳米粉体[J].科学通报, 1998, 43 (2) :172.

[4] 罗明凤, 李丽霞, 杨毅.纳米CuO制备与应用技术进展[J].纳米材料与结构, 2010, 47 (5) :297~303.

二氧化碳的制备教案范文第5篇

三维目标

知识与技能

1、了解二氧化硫的实验室制法

2、探究二氧化硫还原性、氧化性、酸性、漂白性的性质 过程与方法

1、通过探究二氧化硫的性质实验,使学生掌握科学的实验方法,培养学生的逻辑思维能力和动手能力。

2、学会鉴别、处理二氧化硫残留量过多的食品方法。 情感态度价值观

1、通过对二氧化硫性质的推理过程,使学生从中体会到严谨求实的科学探究态度。

2、珍惜有限资源和环境保护意识,具有强烈的社会责任感。

3、培养学生与他人合作的协作精神。

4、让学生具有一些简单的自我保护意识。

要点提示

教学重点

1、对二氧化硫的性质探究

2、培养学生求实协作精神 教学难点

1、利用探究试验推测二氧化硫的化学性质

2、激发学生观察思辨的能力 教学用品

教学有关资料(新观察) 98 %浓硫酸、 无水亚硫酸钠、 品红溶液、 KMnO4 溶液、 Na2S溶液、 5 % NaOH溶液、 蓝色石蕊试纸、 蒸馏水、 乳胶、针筒、 具支试管、小试管、小烧杯等。

教学过程

【提出问题】SO2是一种大气污染物,它是形成硫酸型酸雨的“罪魁祸首”,那么现在就让我们一起来探究SO2的实验室制备方法和其化学性质。 【板书】二氧化硫的制备与性质研究 【演示实验】在一支具支试管中加入少量无水亚硫酸钠固定在铁架台上,分别在 a、 b、 c、上滴 1 滴蒸馏水、KMnO4 溶液和 Na2 S溶液;用针筒吸入23mL 98 %浓硫酸,将针筒中的浓硫酸注入具支试管中,加热,让学生观察玻璃棒上试纸条、 滤纸条,品红溶液的颜色变化,将产生多余的气体通入装有5 % NaOH溶液的小试管中再加热已褪色的品红溶液,观察实验现象。 【实验现象板书】

(1) 蓝色石蕊试纸 a 变红

(2)滴有 KMnO4 溶液的滤纸 b 褪色 (3)滴有 Na2S 溶液的滤纸 c变为黄色

(4)品红溶液褪色,加热已褪色的品红溶液后溶液变红 【整理联系】

(1) 蓝色石蕊试纸 a 变红,说明 SO2 的水溶液呈酸性; (2)滴有 KMnO4 溶液的滤纸 b 褪色 ,说明 SO2具有还原性 ,易被 KMnO4 所氧化;

(3)滴有 Na2S 溶液的滤纸 c变为黄色 ,说明SO2 具有氧化性 ,易将 - 2价硫氧化为0价。

(4)品红溶液褪色,说明 SO2 具有漂白性;加热已褪色的品红溶液后溶液变红,说明SO2 的漂白性不稳定。 【结论板书】

二氧化硫的实验室制法:H2SO4(浓)+Na2SO3=Na2SO4+SO2↑+H2O SO2具有还原性、氧化性、酸性、漂白性,且漂白性不稳定。

二氧化氮的装备及其性质教案

1.1教学目标

(1)了解二氧化氮的物理性质 (2)掌握二氧化氮化学性质

(3)通过观察思考等过程训练科学的学习方法 1.2教学重点

实验原理和二氧化氮的化学性质 1.3课前准备

所用实验用品:注射器,小烧杯三个(分别盛水,氢氧化钠溶液,一个空的),大烧杯一个,大橡胶塞一个,表面皿一个,蓝色石蕊试纸

所用药品:铜片,浓硝酸,氢氧化钠溶液,水 1.4实验演示过程

[提出问题]我们已经学过二氧化氮的物理性质和一些化学性质和它的制备原理,那在实验中我们如何来检验它的一些化学性质呢,由于二氧化氮是有毒气体,在实验中希望制备尽量少的气体,又能完成性质的检验,那我们用什么样的实验来实现我们的目的呢,就让我们来看有关二氧化氮的制备和性质检验的微型实验。

[介绍媒体]我们这个实验用的仪器很简单,和一氧化氮的制备与性质检验相似,用注射器做为反应装置,另外用到橡胶塞作为密封装置。 [实验探究] 实验原理: Cu﹢4HNO3(浓)﹦ Cu(NO3)2﹢2NO2↑+ H2O 相应装置(或实验装置)

仪器药品

注射器 ,小烧杯三个(分别盛水,氢氧化钠溶液,一个空的),大烧杯一个,大橡胶塞一个,表面皿一个,蓝色石蕊试纸

铜片,浓硝酸,氢氧化钠溶液,水

实验步骤

(1)在注射器中放入两片铜片(约0.5克),将注射器推到底部 (2)将输液管插入浓硝酸中,吸入1ml后,将注射器插到橡胶塞上

(3)待反应停止后,看见红棕色气体,压注射器活塞,引导学生观察气体颜色变淡还是变浓还是不变,取一张蓝色石蕊试纸湿润放在干净的表面皿上,拔出注射器,让蓝色溶液流到大烧杯中,将试纸靠近针头,试纸变红色

(4)吸入3ml水在注射器中,看见红棕色气体变无色,让水流出,吸入空气,引导学生观察那一瞬间出现红棕色,(因为注射器中有水,二氧化氮溶于水所以红棕色很快消失)实验结束,将气体推到氢氧化钠溶液中。 1.5板书设计

二氧化氮的制备及其性质检验 实验原理:Cu﹢4HNO3(浓)﹦ Cu(NO3)2﹢2NO2↑+ H2O 化学性质

现象:压活塞,气体颜色不变 性质:2NO2﹦N2O4 蓝色石蕊试纸变红 NO2为酸性气体

二氧化碳的制备教案范文第6篇

开发同时具有过滤和催化氧化除污染双重功能的膜材料经历了3个历程。最初以Ti O2粉末 (非纳米态) 为原料制备陶瓷无机微滤膜;后来更多的研究集中在在铸膜液中掺混纳米态Ti O2;当前的研究已发展成为直接以Ti O2纳米线为基材构建微滤膜或超滤膜。

1 以Ti O2 (非纳米态) 为原料制备陶瓷无机微滤膜

早在1988年, Anderson及其合作者就开始研究Ti O2陶瓷膜[1], 他们通过溶胶凝胶法 (SOL-GEL) 以醇盐制备了γ-Al2O3和Ti O2复合陶瓷膜, 用氮气吸附法测得了膜的孔径和区间分布。1994年美国威斯康星州立大学的Aguado等人考察了光强及膜特性等对Ti O2陶瓷膜光催化降解和机械筛分蚁酸的影响[2], 结果显示随着膜厚度的增加, 光的吸收率也相应增加, 且符合朗伯-比尔定律, 增加的光吸收效应产生了更多的电子空穴, 相应的提高了量子产额, 促进了蚁酸的分解。为了比较Ti O2陶瓷膜和Ti O2粉末 (非纳米态) 的催化能力, 亦即比较固化的Ti O2和分散系Ti O2的光催化动力学特性, Sabate等人考察了Ti O2陶瓷膜 (非纳米态Ti O2制成) 与水相中Ti O2悬浮颗粒体系去除水中含铬污染物的反应过程[3], 他们的研究发现对于同样的Ti O2量, 粉末状态的Ti O2是膜状态Ti O2对铬去除的四倍。

虽然把Ti O2固化成陶瓷膜状态, 能有效回收Ti O2, 实现催化剂的反复利用, 同时还可实现膜的筛分作用, 但是膜状态的Ti O2已经弱化了其与目标污染物的接触反应面积, 降低了Ti O2催化反应效能, 其除污染效果不如Ti O2粉末。

2 在铸膜液中掺混纳米态Ti O2

为了最大发挥Ti O2的催化能力和膜的筛分能力, 近些年, 有不少研究在铸膜料液 (有机高分子) 中掺混纳米Ti O2粉末, 使膜性能得到改善。CAO等人研究对比了PVDF超滤膜和掺混不同粒径的纳米态Ti O2的PVDF超滤膜[4], 结果显示Ti O2的尺寸大小对PVDF膜的结构和膜性能影响很大, Ti O2粒径越小越能提高超滤膜的抗污染效能。膜表面和断面的原子力显微图像证实了小的Ti O2粒径会形成小的平均膜孔径和高的膜孔隙率。韩国Bae等人利用纳米Ti O2和磺酸基团的静电自组装效应制备了抗污染的超滤膜[5], 通过建立膜生物反应器处理市政污水, 结果显示与传统膜生物反应器相比, 含纳米Ti O2的超滤膜的膜过滤初始通量降低过程变为缓慢, 其过滤动力学分析显示掺混了纳米Ti O2的超滤膜减缓了膜表面的滤饼层的形成。Yang等人把纳米尺寸的Ti O2分散在聚砜铸膜液中通过相转化的方法制备了无机/有机共混超滤膜[6], 在纳米Ti O2质量分数为2%的条件下, 成膜展现出了最好的渗透性、机械强度和抗污染能力, 掺混纳米Ti O2超滤膜过滤牛血清蛋白溶液的实验表明其具有优越的抗污染能力, 此外由于增加了膜的亲水性, 掺混纳米Ti O2超滤膜也展现了良好处理含有乳化油废水的脱油能力。Kim等人报道了在商业芳香聚酰胺反渗透膜上利用氢键和羧基官能团的键合作用附着纳米Ti O2[7], 大大提高了反渗透膜的抗生物污染性, 尤其在紫外光辐照时含纳米Ti O2的反渗透膜对大肠菌具有强大的杀菌能力。上述在铸膜液中掺混纳米Ti O2或在膜表面附着纳米Ti O2改善了膜的性能, Ti O2的赋存形态为纳米尺寸, 有效利用了Ti O2的高比表能, 提高了Ti O2与污染物的接触几率, 通过Ti O2激发羟基自由基氧化污染物, 降低了膜污染。

掺混纳米Ti O2仍然存在一些问题需解决, 掺混过程需Ti O2均匀混合, 这一点与液相中纳米Ti O2自发聚集相互矛盾, 此外, 由于多相性, 含有纳米Ti O2的膜材料机械强度的降低也是一个问题。

3 以纳米Ti O2为基材直接制备低压分离膜

当前, 最新的研究已发展成为单纯以纳米Ti O2为基材, 通过物理化学方法直接制备纳米线Ti O2无机微滤膜或超滤膜。2008年, 新加坡南洋理工大学Sun研究组[8]首次报道以纳米Ti O2为基材, 先通过水热反应自生长纳米线, 然后制备Ti O2纳米线超滤膜。超滤膜的膜孔径大约为0.05μm, 在对水中腐殖酸的氧化降解研究中, 该Ti O2纳米线超滤膜与市售的纳米Ti O2粉末 (P25 Degussa) 催化活性相当, 说明成膜过程没有降低纳米Ti O2的光催化活性。

Ti O2纳米线超滤膜的研究是当前水处理功能膜材料新方向, Ti O2纳米线超滤膜的主要优势表现在: (1) 以一维Ti O2纳米线成膜, 保持了高比表能, 高活性的特性, (2) 能同时过滤分离去除和光催化降解去除环境污染物, (3) 由于其具有光催化降解性, Ti O2纳米线超滤膜自成抗污染膜, (4) 由于具有较高的化学和热稳定性, 对环境有很高的适应性。

4 结语

当前, 集筛分去除污染物和降解污染物于一体的陶瓷膜制膜技术尚未成熟, 如制成的膜易龟裂。建议后续开展直接以纳米Ti O2为基材开发Ti O2纳米线环境功能膜材料的研究, 探索如何优化制备条件, 完善成膜方法, 强化Ti O2纳米线膜的除污染功能;考察Ti O2纳米线超滤膜对水中污染物的去除效果, 优化Ti O2纳米线膜的运行条件, 形成集筛分与降解污染物于一体的新型膜法水处理技术。

摘要:膜分离过程中最大的问题是膜污染的问题, 本文介绍了抗污染的集过滤和催化功能于一体的分离膜制备的研究进展, 并分析了不同制备方法的优缺点, 最后提出了新型膜制备的展望。

关键词:无机膜,制备,研究进展

参考文献

[1] Anderson, M.A.;Gieselmann, M.J.;Xu, Q., Titania and alumina ceramic membranes.Journal of Membrane Science 1988, 39, 243-258.

[2] Aguado, M.A.;Anderson, M.A.;Hill, C.G., Influence of light-intensity and membrane-properties on the photocatalytic degradation of formic-acid over tio2 ceramic membranes.Journal of Molecular Catalysis1994, 89, (1-2) , 165-178.

[3] Sabate, J.;Anderson, M.A.;Aguado, M.A.;Giménez, J.;Cervera-March, S.;Hill, C.G., Comparison of Ti O2 powder suspensions and Ti O2ceramic membranes supported on glass as photocatalytic systems in the reduction of chromium (VI) .Journal of Molecular Catalysis 1992, 71, (1) , 57-68.

[4] Cao, X.C.;Ma, J.;Shi, X.H.;Ren, Z.J., Effect of Ti O2 nanoparticle size on the performance of PVDF membrane.Applied Surface Science 2006, 253, (4) , 2003-2010.

[5] Bae, T.H.;Tak, T.M., Effect of Ti O2nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration.Journal of Membrane Science 2005, 249, (1-2) , 1-8.

[6] Yang, Y.N.;Zhang, H.X.;Wang, P.;Zheng, Q.Z.;Li, J., The influence of nano-sized Ti O2 fillers on the morphologies and properties of PSFUF membrane.Journal of Membrane Science 2007, 288, (1-2) , 231-238.

[7] Kim, S.H.;Kwak, S.Y.;Sohn, B.H.;Park, T.H., Design of Ti O2 nanoparticle selfassembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem.Journal of Membrane Science 2003, 211, (1) , 157-165.

相关文章
公关部活动策划书范文

公关部活动策划书范文

公关部活动策划书范文第1篇公关部活动策划书范文第2篇一、情况仰恩大学于1987年由爱国华侨吴庆星先生及其家族设立的仰恩基金会创建,经国家...

1
2025-09-23
广告年度工作总结范文

广告年度工作总结范文

广告年度工作总结范文第1篇一、办公室日常事务性工作1、认真完成办公常规工作,做好公司、上级部门、各服务中心的文件、报告的接收、呈送、...

1
2025-09-23
高级财务会计答案范文

高级财务会计答案范文

高级财务会计答案范文第1篇1.高级财务会计研究的对象是(B.企业特殊的交易和事项)。2.同一控制下的企业合并中,合并方为进行企业合并发生的...

1
2025-09-23
各地风味小吃做法范文

各地风味小吃做法范文

各地风味小吃做法范文第1篇北京西城区广外街道把党支部建在民生项目上2012年腊月廿三,北京又是一个寒冷的日子。在市场上置办年货的广外街...

4
2025-09-22
广东工商职业学院范文

广东工商职业学院范文

广东工商职业学院范文第1篇一、学院概况番禺职业技术学院(原名番禺理工学院)1993年筹建,1997年9月教育部正式批准备案,是全国首批、广州市...

1
2025-09-22
规范公文格式通知范文

规范公文格式通知范文

规范公文格式通知范文第1篇目录公文写作基础知识.............................................................................. 2 公...

1
2025-09-22
感恩生命高中作文范文

感恩生命高中作文范文

感恩生命高中作文范文第1篇感恩教师作文800字高中一:你是一名老师,但在学的心目中,你是我们最铁的朋友。初次见面,你就给我们留下了深刻...

1
2025-09-22
公共服务平台方案范文

公共服务平台方案范文

公共服务平台方案范文第1篇【关键词】物流;虚拟物流;电子商务平台【基金项目】本文是上海大学创新基金科研项目(编号:SHUCX092098) 《基于...

2
2025-09-22
付费阅读
确认删除?
回到顶部