污水处理厂设计内容范文第1篇
1. 处理水量
Q10万m3/d,其中生活污水占70%,工业废水30%。
2. 进水水质
COD:400mg/L
TN:45mg/LBOD:180mg/LSS:200mg/LTP:5mg/LpH:6~9
3. 出水水质
COD60mg/L
TN8mg/LBOD20mg/LSS20mg/LTP1mg/LpH:6~9
4.污水厂进水管道管顶标高-3.5m,污水厂出水排入河流,排放口标高-0.5m。
二、设计任务
1. 确定合适处理工艺及工艺流程;
2. 根据所选工艺进行工艺计算(构筑物尺寸、设备参数、操作参数);
3. 最终完成3张以上设计图纸,其中至少应包含平面布置图(1幅)、高程图(1幅)、主体构筑物的正视、俯视、侧视图(1幅)。
三、参考文献
1. 给水排水设计手册
2. 污水处理新工艺与设计计算实例孙力平著
污水处理厂设计内容范文第2篇
现有标准:
现在执行的《污水综合排放标准》(GB8978-1996),将医院污水按其受纳水体不同的使用功能等规定了相应的粪大肠杆菌群数和余氯标准,对COD、SS等理化指标无特别要求,只需达到要求相对较低的其他排污单位标准,且只给出余氯下限而无上限。
根据现行标准,现有医院污水处理工艺级别低,主要存在(1) 悬浮物浓度高,影响消毒效果;(2)水质波动大,消毒剂投加量难以控制;(3) 消毒副产物产生量大,影响生态环境的安全;(4)余氯标准无上限,过多余氯危害生态安全等问题。
新标准:
为了加强对医院污水污物的控制和实施新的环境标准体系,国家已组织有关部门和人员编制《医疗机构水污染物排放标准》。
1、新标准对医院产生的污水、废气和污泥进行了全面控制,在强调对含病原体污水的消毒效果的同时,兼顾生态环境安全。
2、在生物指标上,新标准对排入下水道与排入水体的医院污水提出不同要求。新标准严格区分医院性质,同时根据污水去向分为两个等级,并在原有标准基础上提出严格的控制各级指标。
3、新标准考虑了消毒效果和生态安全性问题,针对不同性质医院及污水去向对消毒时间和余氯量均作了明确规定,严格了余氯标准的上限。
4、在理化指标方面,对排入地表水体的医院污水和传染病医院污水的COD、BOD
5、SS、动植物油、石油类、阴离子表面活性剂等指标都在原有标准基础上进行了严格的控制,以增强污水处理系统的抗风险性。考虑氨氮也消耗消毒剂,对氨氮也提出了严格的要求。 医院污水常用消毒技术:
医院污水消毒是医院污水处理的重要工艺过程,其目的是杀灭污水中的各种致病菌。医院污水消毒常用的消毒工艺有氯消毒(如氯气、二氧化氯、次氯酸钠)、氧化剂消毒(如臭氧、过氧乙酸)、辐射消毒(如紫外线、γ射线)。
液氯消毒系统:
液氯消毒是医院污水消毒中最常用的方式之一。氯(Cl2)是一种强氧化剂和广谱杀菌剂,能有效杀死污水中的细菌和病毒,并具有持续消毒作用。氯消毒具有药剂易得,成本较低;工艺简单,技术成熟;操作简单,
投量准确;不需要庞大的设备等优点。但氯气有毒,腐蚀性强,运行、管理有一定的危险性。
氯气为受压的液化气体,一般用罐瓶、槽车、罐车、驳船等压力容器装运。
液氯消毒系统主要是由贮氯钢瓶、加氯机、水射器、电磁阀、加氯管道及加氯间和液氯贮藏室等组成。
1 氯瓶
(1)一般情况下,宜采用小容量的氯瓶。氯瓶一次使用周期应不大于3个月。
(2)单位时间内每个氯瓶的氯气最大排出量应符合下述规定:
容积为40升的氯瓶:750g/h;500kg的氯瓶:3000g/h。
2 加氯机
医院污水采用液氯消毒时,必须采用真空加氯机,并将投氯管出口淹没在污水中。
氯气向污水中投加是经过加氯机水射器完成,水射器要求自来水有0.2MPa压力,在水射器内形成负压,将氯气吸入并混合,然后将氯水投加至加氯点。
典型的医院污水处理工艺加氯方式有两种:虹吸式定比加氯和提升式自动定比加氯。
(1)当医院污水站内集水管道高于站外公共污水管或水体水位时(通常需要有600mm的高差),可采用虹吸式定比加氯消毒系统。
(2)当污水需要提升才能排出站外,采用提升式自动定比加氯,消毒投加设备与提升泵同步运行,由集水池的水位控制污水泵自动启动,同时控制投药系统同步运行。
3 加氯系统管材
(1)输送氯气的管道应使用紫铜管;输送氯溶液的管道宜采用硬聚氯乙烯管,阀门采用塑料隔膜阀。
(2)加氯系统的管路应设耐腐蚀的压力表,水射器的给水管上应设普通压力表。
(3)加氯系统的管道应明装,埋地管道应设在管沟内,管道应有一定的支撑和坡度。
4 加氯间和液氯贮藏室
使用液氯消毒时应设液氯贮藏室和加氯间。
(1)加氯间
医院污水加氯间位置的选择应根据医院总体规划、排出口位置、环境卫生要求、风向及维护管理和运输等因素来确定。
加氯间主要放置加氯机等除氯瓶以外的加氯设备。加氯间内应有必要的计量、安全及报警等装置。加氯间门向外开,使用防爆灯照明和其他防
爆电机电器,设排风扇,换气次数按12次/小时设计。排风扇设在加氯间低处,并考虑室外环境,要远离人员活动场所。加氯间室内电气、管道、地面等应考虑防止氯气腐蚀。
(2) 液氯贮藏室
液氯贮藏室应尽量靠近投加地点。液氯贮藏室必须有吊装设备(使用40kg小瓶可不安装吊装设备)和磅秤。
液氯贮藏室应设可容纳氯瓶的水池,水池应保持一定水位,一旦氯瓶泄漏,应迅速将氯瓶推到水池中。
液氯贮藏室直接通向室外的门要向外开,应设排风设备,通风口设在房间离地400mm处。照明使用防爆灯具,设置安全和氯气报警装置。
5 适用范围
1、液氯消毒不宜用于人口稠密区内医院及小规模医院的污水消毒。可用于远离人口聚居区的规模较大(>1000床)且管理水平较高的医院污水处理系统。
2、氯消毒由于余氯过高会造成地表水体内水生生物的死亡,因此当医院污水排至地表水体时应采取脱氯措施或慎用氯消毒。
6 运行管理
1、严禁无加氯机直接向污水中投加氯气。
2、液氯用槽车和钢瓶包装。氯包装量:瓶装充装重量不得大于1.25kg/L,槽车装充装重量不得大于1.20kg/L。
3、在操作间或加氯间进口处应放置方便使用并有明显标志的工具箱、维修工具、药品及防毒面具等。
4、氯瓶放置在磅秤或氯量显示仪上,小瓶应该竖放、大钢瓶则是卧放并固定,不得使其滚动。
5、并联的氯瓶应设置备用瓶,通过自动或手动切换装置更换新氯瓶。
6、氯瓶和加氯机要避开暖气、阳光和明火。为保证正常供氯,氯瓶间的室内温度应保持中温(15℃)。
7、液氯运输、贮存等按GB11984执行。
二氧化氯消毒:
二氧化氯具有高效氧化剂、消毒剂以及漂白剂的功能。作为强化氧化剂,它所氧化的产物中无有机氯化物;作为消毒剂,它具有广谱性的消毒效果。
二氧化氯必须现场制备。现场制备二氧化氯的方法主要为化学法和电解法。
1、化学法制备二氧化氯消毒工艺是以氯酸钠、亚氯酸钠、次氯酸钠和盐酸等为原料,经反应器发生化学反应产生二氧化氯气体,再经水射器混合形成二氧化氯水溶液,然后投加到被消毒的污水中进入消毒接触池消毒。
2、电解法制备二氧化氯消毒工艺是以饱和食盐水为原料通过电解产生二氧化氯、氯气、过氧化氢、臭氧的混合气体,用于消毒。混合气体的协同作用,具有广谱的杀菌能力,其消毒效果远强于任何单一的消毒剂。
5.3.1 工程设计
1、化学法制备二氧化氯消毒工艺
(1)二氧化氯消毒系统设计和发生器选型应根据医院污水的水质水量和处理要求确定,并考虑备用。
(2)因原料为强氧化性或强酸化学品,储存间必须考虑分开安全储放;储存量为10~30天的用量。
(3)二氧化氯溶液浓度应小于0.4%,其投加量应与污水定比或用余氯量自动控制。
(4)应设计二氧化氯监测报警和通风设备。
2、电解法制备二氧化氯消毒工艺
(1)电解法制备二氧化氯设备主要由电解槽、电源、水泵和水射器组成。电解槽使用6V或12V两种直流电源。
(2)电解法制备二氧化氯设备的溶盐装置一般与发生器一体化,但因二氧花氯为混合消毒气体,为了能定比投氯,必须设置溶液箱。
(3)二氧化氯是由水射器带出并溶于水的,所以设备间必须有足够的压力自来水,如水压不够0.2MPa,需加设管道泵。
(4)应注意设备排氢管的设计,及时排除在设备运行过程中产生的可爆炸气体。
5.3.2 适用范围
1、二氧化氯消毒不宜用于人口稠密区及大规模医院的污水消毒。可用于远离人口聚居区、规模较小的医院污水处理系统。
2、由于二氧化氯在空气中和水中浓度达到一定程度会发生爆炸,因此该法适用于管理水平较高的医院污水处理系统。
3、化学法适用于规模>500床的医院污水处理消毒系统。
4、二氧化氯消毒由于余氯过高会造成地表水体内水生生物的死亡,因此当医院污水排至地表水体时应采取脱氯措施或慎用二氧化氯消毒。
5.3.3 运行管理
1、二氧化氯活化液不稳定,应现配现用。
2、配制溶液时,忌与碱或有机物相混合。
3、投加量根据实际水质水量实验确定。
次氯酸钠消毒
次氯酸钠消毒是利用商品次氯酸钠溶液或现场制备的次氯酸钠溶液作为消毒剂,利用其溶解后产生的次氯酸对水中的病原菌具有良好的杀灭效果,对污水进行消毒。
1、次氯酸钠发生器
利用电解食盐水(或海水)制取次氯酸钠水溶液。这种发生器的优点是结构简单、自动化程度高、电耗低、耗盐量小,生产的次氯酸钠可达10~12% (有效氯含量)。其缺点是在电极表面易形成钙镁等沉积物,需要经常清洗电极。
商品次氯酸钠溶液有效氯含量为10%~12%,次氯酸钠为淡黄色透明液体,具有与氯气相同的特殊气味。
2、漂白粉及漂粉精消毒
漂白粉(Ca(OCL)2)为白色粉末状,具有强烈气味,化学性质不稳定,易分解而失效,能使大部分有机色彩氧化褪色或漂白。
漂粉精是较纯的次氯酸钙,有效氯含量为65%~70%,是一种较稳定的氯化剂,密封良好时能长期保存(1年左右)。 漂粉精用于医院污水消毒可以直接使用粉剂投加到医院污水中,既可用于干式投加法,也可以将漂粉精溶解在水里,制成溶液投加到污水中,称湿式投加。还有一种方法是漂粉精制成片剂用消毒机投加。
5.4.1 工程设计
1、配套建筑物及设备
采用次氯酸钠发生器消毒的污水处理站应根据次氯酸钠发生器的型号及其附属设备要求进行布置。一般要求需要有专用的盐液制备间和次氯酸钠发生器设备间。盐液制备间与次氯酸钠发生器设备间宜分为两个房间。
2、主要工艺参数
(1)根据污水的水质水量、处理级别计算投氯量,按投氯量选择次氯酸钠发生器型号及台数,然后计算用盐量、贮盐量。
(2)污水量按最高日污水量计算,盐水池按12~24h设计。
(3)次氯酸钠溶液贮槽按8~16h设计。
3、次氯酸钠的投配
次氯酸钠发生器所产生的次氯酸钠溶液贮存在贮槽内,可采用虹吸式自动投加或与污水泵连动投加,将溶液通过投加管、电磁阀、流量计将溶液投加到污水池或污水管中。
4、漂精粉的投加
(1)漂精粉的湿式投加系统需设置溶药槽和投配槽。
(2)溶药槽和投配槽一般用塑料制成,溶药槽需设有搅拌器,一般设置2个,投配槽可设1个,沉渣排入下水道,溶药槽和投配槽大小按处理污水量和投药量计算确定。
5.4.2 适用范围
1、次氯酸钠消毒不宜用于人口稠密区内及大规模医院的污水消毒。可用于远离人口聚居区、规模较小的医院污水处理系统。
2、漂粉精、漂白粉适用于规模<300床的经济欠发达地区医院污水处理消毒系统。
3、电解法次氯酸钠发生器适用于管理水平较高的医院污水处理消毒系统。
4、二氧化氯消毒由于余氯过高会造成地表水体内水生生物的死亡,因此当医院污水排至地表水体时应采取脱氯措施或慎用氯消毒。
5.4.3 运行管理
1、次氯酸钠溶液贮槽应防腐蚀,可用聚氯乙烯板或玻璃钢制作。
2、在使用次氯酸钠溶液消毒时,必须注意保存条件,经常分析化验其有效氯含量,以便掌握有效氯的衰减情况,确定每次的最佳送货量和送货周期,减少氯的损失。
3、商品次氯酸钠应在21℃左右避光贮存。
4、漂白粉应贮存于干燥、阴凉通风的仓库中,防止日晒雨淋,应远离火种和热源,不可与有机物、酸类及还原剂共存。
5、漂粉精放入溶药槽,加水配制成有效氯含量为1%~5%的溶液,静止澄清,使用上清液投加。每日配制1~2次。
氯消毒接触池
1、医院污水消毒按运行方式可分为连续消毒和间歇消毒两种方式。
2、接触消毒池的容积应满足接触时间和污泥沉积的要求。传染病医院污水接触时间不宜小于1.5小时,综合医院污水接触时间不宜小于1.0小时。
3、连续式消毒的接触池有效容积为污水部分容积和污泥部分容积之和。
4、间歇式消毒时,接触池的总有效容积应根据工作班次、消毒周期确定,一般宜为调节池容积的1/2。
5、接触消毒池一般分为两格,每格容积为总容积的一半。池内应设导流墙(板),避免短流。导流墙(板)的净距应根据水量和维修空间要求确定,一般为600~700mm。接触池的长度和宽度比不宜小于20:1。接触池出口处应设取样口。
6、设计时应按设计选定的处理工艺流程的实际运行情况,按最不利情况进行组合,校核实际接触时间,以满足设计要求。
氯消毒设计要点
当污水采用氯消毒工艺时,其设计加氯量可按下列数据确定:
1、液氯消毒系统参照《室外排水设计规范》GBJ14-87有关章节进行设计。
2、加强处理效果的一级处理出水的设计加氯量以有效氯计,一般为30-50mg/L。
3、二级处理出水的设计参考加氯量一般为10-15 mg(有效氯)/L。
4、当污水采用其他方法消毒时,其设计投加量应根据具体水质确定。
5、加药设备至少为2套,1用1备。
6、氯投加量为参考值,运行中应根据余氯量和实际水质水量实验确定投加量。
臭氧消毒
臭氧,分子式为O3,具有特殊的刺激性臭味,是国际公认的绿色环保型杀菌消毒剂。臭氧在水中产生氧化能力极强的单原子氧(O)和羟基(OH),羟基(OH)对各种致病微生物有极强的杀灭作用,单原子氧(O)具有强氧化能力,对各种病毒、细菌均有很强的杀灭能力。
臭氧消毒具有反应快、投量少;适应能力强,在pH5.6~9.8、水温0~37℃范围内,臭氧消毒性能稳定;无二次污染;能改善水的物理和感官性质,有脱色和去嗅去味作用。但缺点是无持续消毒功能、只能现场生产使用、臭氧消毒法设备费用较高、耗电较大。
臭氧制备法有电晕放电法、紫外线法、化学法和辐射法等,工程一般采用电晕放电法。
5.7.1 工程设计
1、医院污水臭氧处理站应设置空压机房、臭氧发生器设备间和操作间。空压机房安放空压机,空压机应防震和防止噪声。臭氧发生器间应留有设备检修空间。臭氧接触塔在寒冷地区应设在室内,尾气处理后设排气管排出室外。
2、医院污水消毒的主要工艺参数如表5-2所示。
表5-2 医院污水臭氧消毒的主要工艺参数
3、在选择臭氧发生器时,要根据污水水质及处理工艺确定臭氧投加量,再根据臭氧投加量和单位时间处理水量确定臭氧使用量,按每小时使用臭氧量选择臭氧发生器台数及型号。
4、臭氧与污水接触方式一般采用鼓泡法,气泡分散越小,臭氧利用率越高,消毒效果越好。因此要选择气水混合效果好的臭氧进气装置。
5、臭氧系统设备管道应做防腐处理与密封。
6、臭氧设备间应设置通风设备,通风机应安装在靠近地面处。
7、在工艺末端必须设置尾气处理或尾气回收装置,反应后排出的臭氧尾气必须经过分解破坏或回收利用,达到排放标准。
5.7.2 适用范围
1、采用二级处理的医院污水最好采用臭氧消毒,这样可以减少臭氧的投加量,降低设备投资费用和运行费用。
2、投资及运行费用较高,适用于管理水平较高的传染病医院及综合医院污水处理。
5.7.3 运行管理
1、臭氧对人有毒,国家规定大气中允许浓度为0.2mg/m3。
2、臭氧为强氧化剂,浓度越高对接触物品损害越重,使用时应注意。
3、在使用时应控制影响臭氧杀菌作用的因素,包括温度、相对湿度、有机物、pH、水的浑浊度、水的色度等。
4、在产臭氧过程中,避免放电电极潮湿而造成断路。
5、臭氧的产量受电压、进气量和进气压力的影响。
6、臭氧的投加量和剩余臭氧量在消毒中起着重要作用,使用时应注意控制。
紫外线消毒
消毒使用的紫外线是C波紫外线,其波长范围是200~275nm,杀菌作用最强的波段是250~270nm。紫外线消毒技术是利用特殊设计的高功率、高强度和长寿命的C波段紫外光发生装置产生的强紫外光照射流水,使水中的各种细菌、病毒、寄生虫、水藻以及其他病原体受到一定剂量的紫外C光辐射后,其细胞组织中的DNA结构受到破坏而失去活性,从而杀灭水中的细菌、病毒以及其它致病体,达到消毒杀菌和净化的目的。紫外线杀菌速度快,效果好,不产生任何二次污染,属于国际上新一代的消毒技术。但要求水中悬浮物浓度较低,以保证良好的透光性。
5.8.1 工程设计
1、采用紫外线消毒时要求被处理的水中悬浮物浓度<10mg/L,在此条件下推荐的照射强度为25-30μW/cm2,照射时间>10s。
2、紫外线消毒系统可采用明渠型或封闭型。相对而言,明渠型比封闭型更容易监测和维护,对水流阻力也小。
3、紫外系统内还应包括清洗设施。医院污水应采用设置自动清洗装置。
4、紫外系统用于医院污水处理过程中排放的气体消毒时,采用循环式紫外空气消毒装置。
5、紫外灯管应专业回收。
5.8.2 适用范围
1、出水悬浮物浓度小于10mg/L的污水处理系统可采用紫外消毒方式;
2、在有特殊要求的情况下,如排入某些有特殊要求的水域时,可采用紫外消毒方式;
5.8.3 运行管理
1、不得使紫外线光源照射到人,并注意眼睛的防护,以免引起损伤。
2、在使用过程中,要特别注意对紫外线灯管辐照度值进行测定。
3、使用的紫外线灯,新灯的辐照强度不得低于90uw/cm2,使用中紫外线的辐照强度不得低于70 uw/cm2,凡低于70 uw/cm2者应及时更换灯管。
4、紫外线消毒的最适宜温度范围是20~40℃,温度过高过低均会影响消毒效果。
污水处理厂设计内容范文第3篇
一、自然条件
1、 气候:该城镇气候为亚热带海洋季风性季风气候,常年主导风向为东南风。
2、 水文:最高潮水位
6.48m(罗零高程,下同)
高潮常水位
5.28m
低潮常水位
2.72m
二、城市污水排放现状
1、污水水量
(1)生活污水按人均生活污水排放量300L/人.d; (2)生产废水量按近期1.5万m3/d,远期2.4万m3/d; (3)公用建筑废水量排放系数按近期0.15,远期0.20考虑; (4)处理厂处理系数按近期0.80,远期0.90考虑。
2、污水水质
(1) 生活污水水质指标为 CODcr
60g/人.d BOD5
30g/人.d (2) 工业污染源参照沿海开发区指标,拟定为: CODcr
300mg/L;
BOD5
170mg/L (3)
氨氮根据经验确定为30md/L。
三、污水处理厂建设规模与处理目标
1、 建设规模
该污水处理厂服务面积为10.09km2, 近期(2000年)规划人口为6.0万人,远期(2020年)规划人口为10.0万人。处理水量近期3.0万m3/d,远期6.0万m3/d。
2、 处理目标
根据该城镇环保规划,污水处理厂出水进入的水体水质按国家3类水体标准控制,同时执行国家关于污水排放的规范和标准,拟定出水水质指标为
CODcr100mg/L;
BOD530mg/L;
SS30mg/L ; NH3-N10mg/L
四、建设原则
污水处理工程建设过程中应遵从下列原则:污水处理工艺技术方案,在达到治理要求的前提下应优先选择基建投资和运行费用少、运行管理简便的先进的工艺;所用污水、污泥处理技术和其他技术不仅要求先进,更要求成熟可靠;和污水处理厂配套的厂外工程应同时建设,以使污水处理厂尽快完全发挥效益;污水处理厂出水应尽可能回用,以缓解城市严重缺水问题;污泥及浮渣处理应尽量完善,消除二次污染;尽量减少工程占地。 第二章 污水处理工艺方案选择
一、工艺方案分析
本项目污水以有机污染为主,BOD/COD=0.54 可生化性较好,重金属及其他难以生物降解的有毒有害污染物一般不超标,针对这些特点,以及出水要求,现有城市污水处理技术的特点,以采用生化处理最为经济。由于将来可能要求出水回用,处理工艺尚应硝化。
根据国内外已运行的大、中型污水处理厂的调查,要达到确定的治理目标,可采用“普通活性污泥法”或“氧化沟”法。
普通活性污泥法,也称传统活性污泥法,推广年限长,具有成熟的设计运行经验,处理效果可靠,如设计合理,运行得当,出水BOD5可达10-20mg/L,它的缺点是工艺路线长,工艺构筑物及设备多而复杂,运行管理困难,运行费用高。 氧化沟处理技术是20世纪50年代有荷兰人首创。60年代以来,这项技术在国外已被广泛采用,工艺及构筑物有了很大的发展和进步。随着对该技术缺点(占地面积大)的克服和对其优点的逐步深入认识,目前已成为普遍采用的一项污水处理技术。
氧化沟工艺一般可不设初沉池,在不增加构筑物及设备的情况下,氧化沟内不仅可完成碳源的氧化,还可实行脱氮,成为A/O工艺,由于氧化沟内活性污泥已经好氧稳定,可直接浓缩脱水,不必厌氧消化。
氧化沟污水处理技术已被公认为一种成功的革新的活性污泥法工艺,与传统活性污泥系统相比较,它在技术、经济等方面具有一系列独特的优点。
1、 工艺流程简单、构筑物少,运行管理方便。一般情况下,氧化沟工艺可比传统活性污泥法少建初沉池和污泥厌氧消化系统,基建投资少。另外,由于不采用鼓风曝气和空气扩散器,不建厌氧硝化系统,运行管理方便。
2、 处理效果稳定,出水水质好。
3、 基建投资省,运行费用低。
4、 污泥量少,污泥性质稳定。
5、 具有一定承受水量、水质冲击负荷的能力。
6、 占地面积少。
污水处理厂的基建投资和运行费用与各厂的污水浓度和建设条件有关,但在同等条件下的中、小型污水厂,氧化沟比其他方法低,据国内众多已建成的氧化沟污水处理厂的资料分析,当进水BOD5在120-180mg/L时,单方基建投资约为700-900元/(m3.d),运行成本为0.15-0.30元/m3污水。
由以上资料,经过简单的分析比较,氧化沟工艺具有明显优势,故采用氧化沟工艺。
二、工艺流程确定:(如图所示) 说明:由于不采用池底空气扩散器形成曝气,故格栅的截污主要对水泵起保护作用,拟采用中格栅,而提升水泵房选用螺旋泵,为敞开式提升泵。为减少栅渣量,格栅栅条间隙已拟定为25.00mm。
曝气沉砂池可以克服普通平流沉砂池的缺点:在其截流的沉砂中夹杂着一些有机物,对被有机物包裹的沙粒,截流效果也不高,沉砂易于腐化发臭,难于处置。故采用曝气沉砂池。
本设计不采用初沉池,原则上应根据进水的水质情况来确定是否采用初沉池。但考虑到后面的二级处理采用生物处理,即氧化沟工艺。初沉池会除去部分有机物,会影响到后面生物处理的营养成分,即造成C/N比不足。因此不予考虑。 拟用卡罗塞尔氧化沟,去除COD与BOD之外,还应具备硝化和一定的脱氮作用,以使出水NH3低于排放标准,故污泥负荷和污泥泥龄分别低于0.15kgBOD/kgss*d和高于20.0d。
氧化沟采用垂直曝气机进行搅拌,推进,充氧,部分曝气机配置变频调速器,相应于每组氧化沟内安装在线DO测定仪,溶解氧讯号传至中控室微机,给微机处理后再反馈至变频调速器,实现曝气根据DO自动控制
为了使沉淀池内水流更稳定(如避免横向错流、异重流对沉淀的影响、出水束流等)、进出水更均匀、存泥更方便,常采用圆形辐流式二沉池。向心式辐流沉淀池采用中心进水,周边出水,多年来的实际和理论分析,认为此种形式的辐流沉淀池,容积利用率高,出水水质好。设计流量 Q=2.85万m3/d=1208.3 m3/h,回流比 R=0.7。
第三章
污水处理工艺设计计算
一、水质水量的确定 1. 水量的确定
近期水量:生活废水Q生活=6.0104300L/人•天=1.8104m3/d
工业废水Q工业=1.5104m3/d
公用建筑废水Q公用=1.81040.15=0.27104m3/d 所以近期产生的废水量为Q Q=Q生活+Q工业+Q公用=(1.8+1.5+0.27)104 =3.57104m3/d 近期的处理系数为0.8,故近期污水处理厂的处理量 Qp=3.571040.8=2.856104m3/d
远期水量:生活废水Q生活=10.0104300L/人•天=3.0104m3/d
工业废水Q工业=2.4104m3/d
公用建筑废水Q公用=3.01040.2=0.6104m3/d 所以远期产生的废水量为Q Q=Q生活+Q工业+Q公用=(3.0+2.4+0.6)104 =6.0104m3/d 远期的处理系数为0.9,故远期污水处理厂的处理量
Qp=6.01040.9=5.4104m3/d 通常设计污水处理厂时远期的设计处理量为近期的两倍,综合考虑近期和远期的处理水量,取近期的设计处理水量Qp=3.0104m3/d,远期的设计处理水量Qp=6.0104m3/d。 2. 水质的确定 近期COD:
COD = =242mg/L 近期BOD5: BOD5= =129mg/L 远期COD: COD= =240 mg/L 远期BOD5:
BOD5= =128mg/L NH3-N按规定取为30 mg/L 所以处理厂的处理水质确定为COD=242mg/L,BOD5=129mg/L,NH3-N=30 mg/L
二、曝气沉砂池设计计算说明书
沉砂池的作用是从污水中去除砂子、煤渣等比重比较大的无机颗粒,以免这些杂质影响后续构筑物的正常运行。常用的沉砂池有平流式沉砂池、曝气沉砂池、竖流沉砂池和多尔沉砂池等。平流式沉砂池构造简单,处理效果较好,工作稳定,但沉砂中夹杂一些有机物,易于腐化散发臭味,难以处置,并且对有机物包裹的砂粒去除效果不好。曝气沉砂池在曝气的作用下颗粒之间产生摩擦,将包裹在颗粒表面的有机物除掉,产生洁净的沉砂,通常在沉砂中的有机物含量低于5%,同时提高颗粒的去除效率。多尔沉砂池设置了一个洗砂槽,可产生洁净的沉砂。涡流式沉砂池依靠电动机机械转盘和斜坡式叶片,利用离心力将砂粒甩向池壁去除,并将有机物脱除。后3种沉砂池在一定程度上克服了平流式沉砂池的缺点,但构造比平流式沉砂池复杂。
和其它形式的沉砂池相比,曝气沉砂池的特点是:
一、可通过曝气来实现对水流的调节,而其它沉砂池池内流速是通过结构尺寸确定的,在实际运行中几乎不能进行调解;
二、通过曝气可以有助于有机物和砂子的分离。如果沉砂的最终处置是填埋或者再利用(制作建筑材料),则要求得到较干净的沉砂,此时采用曝气沉砂池较好,而且最好在曝气沉砂池后同时设置沉砂分选设备。通过分选一方面可减少有机物产生的气味,另一方面有助于沉砂的脱水。同时,污水中的油脂类物质在空气的气浮作用下能形成浮渣从而得以被去除,还可起到预曝气的作用。只要旋流速度保持在0.25~0.35m/s范围内,即可获得良好的除砂效果。尽管水平流速因进水流量的波动差别很大,但只要上升流速保持不变,其旋流速度可维持在合适的范围之内。曝气沉砂池的这一特点,使得其具有良好的耐冲击性,对于流量波动较大的污水厂较为适用,其对0.2mm颗粒的截流效率为85%。 由于此次设计所处理的主要是生活污水水中的有机物含量较高,因此采用曝气沉砂池较为合适。
曝气沉砂池的设计参数:
(1)旋流速度应保持0.250.3m/s; (2)水平流速为0.080.12 m/s; (3)最大流量时停留时间为13min;
(4)有效水深为23m,宽深比一般采用1~1.5;
(5)长宽比可达5,当池长比池宽大得多时,应考虑设置横向挡板; (6)1 污水的曝气量为0.2 空气;
(7)空气扩散装置设在池的一侧,距池底约0.6~0.9m,送气管应设置调节气量的阀门;
(8)池子的形状应尽可能不产生偏流或死角,在集砂槽附近可安装纵向挡板; (9)池子的进口和出口布置,应防止发生短路,进水方向应与池中旋流方向一致,出水方向应与进水方向垂直,并考虑设置挡板; (10)池内应考虑设置消泡装置。
一、 曝气沉砂池的设计与计算 1. 最大设计流量Qmax Qmax=KzQp 式中的Kz为变化系数,Kz=1.42
Qmax=1.420.347=0.493 m3/s
2. 池子的有效容积
V=60Qmaxt 式中 V沉砂池有效容积,m3;
Qmax最大设计流量,m3/s;
t最大设计流量时的流动时间,min,设计时取1~3min。 所以
V=600.4931.5=44.37m3 3. 水流断面面积
A=
式中 A水流断面面积,m2
Qmax最大设计流量,m3/s;
V水流水平流速,m/s。 所以
A=4.11m2 取
A=4.2m2 4.池宽B B=
h沉砂池的有效水深,m。 取h=2m。所以B= =2.1m B/h=1.05,满足要求。 5. 池长
L= = m,取L=10.5m 此时L/B=5满足要求 6.流速校核
Vmin= m/s,在0.8~1.2m/s之间,满足要求 7.曝气沉砂池所需空气量的确定
设每立方米污水所需空气量
d=0.2m3空气/m3污水
8.沉砂槽的设计
若设吸砂机工作周期为t=1d=24h,沉砂槽所需容积
式中Qp的单位为m3/h 设沉砂槽底宽0.5m,上口宽为0.7,沉砂槽斜壁与水平面夹角60°, 沉砂槽高度为
h1= 沉砂槽容积为
9.沉沙池总高
设池底坡度为0.3,坡向沉砂槽,池底斜坡部分的高度为
h2=0.30.7=0.21m 设超高 ,沉沙池水面离池底的高
m 10.曝气系统的设计
采用鼓风曝气系统,罗茨鼓风机供风,穿孔管曝气
(1)干管直径d1:由于设置两座曝气沉砂池,可将空气管供应两座的气量,即主管最大气量为q1=0.06942=0.1388m3/s,取干管气速v=12m/s, 干管截面积A= = =0.0116m2 d1= = m=120mm,
因为没有120mm的管径,所以采用接近的管径100mm。
回算气速v=17.7m/s 虽然超过15 m/s,但若取150的管气速又过小,所以还是选择管径100mm。
(2)支管直径d2:由于闸板阀控制的间距要在5m以内,而曝气的池长为10.5米,所以每个池子设置三根竖管,设支管气速为v=5m/s, 支管面积
A= m2 d2= = mm, 取整管径d2=80mm 校核气速v=4.6m/s (满足35m/s) (3)穿孔管:采用管径为6mm的穿孔管,孔出口气速为设5m/s,孔口直径取为5mm(在2~6mm之间)
一个孔的平均出气量 q= =9.8110-5m3/s 孔数:n= 个
孔间隔
为 ,在10~15mm之间,符合要求。
穿孔管布置:在每格曝气沉砂池池长一侧设置1根穿孔管曝气管,共两根。
二、细格栅的选型和计算
选用XG1000型细格栅,参数如下
设备宽B:1000mm
有效栅宽B1:850㎜
有效栅隙:5㎜
耙线速度:2 m/min
电机功率:1.1kw
安装角度:60°
渠宽B3:1050㎜
栅前水深h2:1.0m/s
流体流速:0.5~1.0m/s 栅条宽度s=0.01m 1. 栅前后的水头损失 水流断面面积 m2 栅前流速
在0.4~0.9m/s范围内,复合要求 设过栅流速为v=0.6m/s 设栅条断面为锐边矩形断面,取k=3 ,则通过格栅的水头损失为:
。 3. 栅槽总长度
栅前的渠道超高设为0.45m,所以渠道高度为1.45m 因为安装高度是取60°,所以格栅所占的渠道长为1.45ctg =1.45ctg60°=0.84m 栅后长1米。 所以渠道的总长度 L=0.5+0.84+1=2.34m
三、水面标高
根据经验值污水每经过一个障碍物水面标高下降3~5cm,根据曝气沉砂池的有效水深以及砂斗的高度可推算出各个构筑物的水面标高,本次设计以经过一个障碍物水位下降5cm来计算,以曝气沉砂池的砂槽底为0米进行计算。 曝气沉砂池的水面标高:2.38m 细格栅与曝气沉砂池之间的配水井的水面标高:
2.43m 细格栅栅后水面标高:
2.48m 细格栅栅前水面标高:2.48+0.29=2.77m 配水井外套桶水面标高: 2.82m 配水井内套桶水面标高: 2.88 设配水井超高为0.35m 则整个曝气沉砂池系统的最高标高为3.23m 则曝气沉砂池的超高为h1=3.23-2.38=0.85m
四、配水井的计算
设配水井的平均停留时间为T=1.5min,Qp=0.347 m3/s,假设配水井水柱高为5.03米。 配水井面积为
配水井直径为
因为进水管径为1000,管离底为200mm。所以覆土厚度为1.28m。
五、砂水分离器和吸砂机的选择
(1)选用直径LSSF型螺旋式砂水分离器
(2)根据池宽选用LF-W-CS型沉砂池吸砂机,其主要参数为: 潜污泵型号:AV14-4(潜水无堵塞泵)
潜水泵特性 扬程:2m,流量:54m3/h,功率:1.4kw 行车速度为2-5m/min,提耙装置功率
0.55kw
驱动装置功率: 0.372kw
钢轨型号
15kg/mGB11264-89
轨道预埋件断面尺寸(mm) (b1-20) 60 10(b1:沉砂池墙体壁厚) 轨道预埋件间距
1000mm
四、氧化沟
1、设计说明
拟用卡罗塞尔氧化沟,去除COD与BOD之外,还应具备硝化和一定的脱氮作用,以使出水NH3低于排放标准。采用卡式氧化沟的优点:立式表曝机单机功率大,调节性能好,节能效果显著;有极强的混合搅拌与耐冲击负荷能力;曝气功率密度大,平均传氧效率达到至少2.1kg/(kW*h);氧化沟沟深加大,可达到5.0以上,是氧化沟占地面积减小,土建费用降低。
氧化沟采用垂直曝气机进行搅拌,推进,充氧,部分曝气机配置变频调速器,相应于每组氧化沟内安装在线DO测定仪,溶解氧讯号传至中控室微机,给微机处理后再反馈至变频调速器,实现曝气根据DO自动控制
2、设计计算 (1).设计参数:
qv=30000m3/d(设计采用双池,则单池流量=15000 m3/d), 设计温度15℃,最高温度25℃,
进水水质:近期:CODCr=242mg/L,BOD5=129.4mg/L, NH3-N=30mg/L, 远期:CODCr=240mg/L,BOD5=128mg/L, NH3-N=30mg/L,
出水水质:CODCr=100mg/L,BOD5=30mg/L,SS=30mg/L,NH3-N=10mg/L (2).确定采用的有关参数:
取MLSS=3500mg/L,假定其70%是挥发性的,DO=3.0mg/L,k=0.05,Cs(20)=9.07mg/L y=0.6mgVSS/mgBOD5,Kd=0.05d-1,qD,20=0.05kgNH3-N/kgMLVSS•d,CS(20)=9.07mg/L, α=0.90,β=0.94,
剩余碱度:100mg/L(以CaCO3),所需碱度7.14mg碱度/mgNH3-N氧化;产生碱度3.0mg碱度/mgNO3-N还原,硝化安全系数:3。 (3).设计泥龄: 确定硝化速率μN
μN=0.47e0.098(T-15)*N/KN+N*DO/ Ko+DO=0.47*e0.098*(15-15)*30/(100.051*15-1.158+30)*2/(1.3+2)
=0.22d-1 θcm=1/=1/0.22=4.5d,设计泥龄θc=3*4.5=13.5d 为了保证污泥稳定,应选择泥龄为30d (4).设计池体体积:
①确定出水中溶解性BOD5的量:
出水中悬浮固体BOD5=1.4*0.68*30*70%=20mg/L
出水中溶解性BOD5的量=30-20=10mg/L ②好氧区容积计算:
V1=y*qv*(So-Se)*θc/MLVSS*(1+Kd*θc)=0.6*30000*(129.4-10)*30/(0.7*3500*(1+0.05*30))=9278m3 水力停留时间t1= V1/ qv =9278/30000=0.31d=7.4h
③脱氮计算:
产生污泥量=y*qv*(So-Se)/(1+Kd*θc)=0.6*30000*(129.4-10)/(1000*(1+0.05*30))=860kg/d 假设污泥中大约含12.4%的氮,这些氮用于细胞合成,
用于合成的氮=0.124*860=106.6kg/d,转化为:106.6*1000/30000=3.55mg/L 故脱氮量=30-10-3.55=16.45mg/L。 ④碱度计算:
剩余碱度=300-7.14*20+3.0*16.45+0.1(129.4-10)=218.5mg/L(以CaCO3) 大于100mg/L,可以满足pH>7.2 ⑤缺氧区容积计算:
qD=qD,20*1.08T-20=0.05*1.0815-20=0.032 kgNH3-N/kgMLVSS•d V2=qv*△N/qD/MLVSS=30000*16.45/0.032/0.7/3500=6295m3 水力停留时间t2=V2/qv=6295/30000=0.21d=5h ⑥总池容积计算
V=V1+V2=9278+6295=15573m3,t=t1+t2=7.4+5=12.4h (5).曝气量计算 ①计算需氧气量
R=(So-Se)qv*/(1-e-kt)-1.42Px+4.6*qv*△N-2.6*qv*NO3-0.56Px =30000*(129.4-10)/(1-e-kt)/1000-1.42*856.8+4.6*30000*20/1000 -2.6*30000*16.45/1000-0.56*856.8=5049kg/d=211 kg/h ②实际需氧量
Ro’=1.2*R=1.2*211=253.2kg/d 校核:Ro=R*Cs(20)/α/(β*Cs(T)-C)/1.024T-20=253.2*9.07/0.9/(0.94*8.24-3)/1.024 25-20
=477.6kg/h
(在400-500之间
符合) 6.沟型尺寸设计及曝气设备选型 采用卡式氧化沟(两座并联):
取有效水深H=3.5m,单沟的宽度b=7.8m,进水量15000 m3/d, 则单沟长=[V/2-0.5π(2b)2 h-2*0.5πb2 h]/4Hb=53m, 单沟好氧区总长度=单沟长*4* V1 /V=126m 单沟厌氧区总长度=单沟长*4* V2 /V=76m 采用四沟道,两台55kW的立式表曝气机(单池) 曝气设备:PSB3250:D=3.25m,P=132kW,n=30r/min,清水充氧量:252kg/h,
7.配水井设计
污水在配水井的停留时间最少不低于3min(不计回流污泥的量),
设截面中半圆的半径为r,矩形的宽度为r,长度为2r,设计的有效水深为4.0m (2*r*r+0.5πr2)*4=30000*3/24/60 r=2.7m 8.其它附属构筑物的设计
工程设计中墙的厚度为250mm;氧化沟体表面设置走道板的宽度为800mm;;倒流墙的设计半径为3.9m;配水井的进水管道采用的规格为DN900,污泥回流管道采用的规格为DN500;出水井的设计尺寸为3000mm*1000mm*1000mm,出水堰高为100mm,堰孔直径为40mm,出水管采用的规格为DN700。
五、辐流式二沉池 1.设计说明 1.1二沉池的类型
二沉池的类型有:平流式二沉池、竖流式二沉池、辐流式二沉池、斜流式二沉池。其中,辐流式二沉池又分为:中进周出式、周进周出式、中进中出式。 1.2选择辐流式(中进周出)二沉池的原因
由于平流式二沉池占地面积大;竖流式二沉池多用于小型废水中絮凝性悬浮固体的分离;斜流式二沉池较多时候,在曝气池出口污泥浓度高,而且没有设置专门的排泥设备,容易造成阻塞。因此选择辐流式二沉池。从出水水质和排泥的方面考虑,理论上是周进周出效果最好。但是,实际上,考虑异重流,是中进周出的效果最好。因此,选择了选择辐流式(中进周出)二沉池。 2.设计计算 2.1污泥回流比:
2.2沉淀部分水面面积:
流量:
;
最大流量(设计流量):
单个池子的设计流量:
污泥负荷q取1.1m3/(m2.h),
池子数n为2 。
沉淀部分水面面积:
2.3校核固体负荷:
因为142<150,符合要求。 2.4池子直径
池子直径:
根据选型取池子直径为35.0m。 2.5沉淀部分的有效水深
沉淀时间t为2.5s
有效水深:
2.6沉淀池总高
2.7校核径深比: 径深比为
符合要求。 2.8进水管的设计 单体设计污水流量:
进水管设计流量:
取管径D=700mm ,流速为
因为,0.697>0.6符合要求,所以进水管直径为D=700mm。 2.9稳流筒
进水井的流速为0.8m/s ,则过水面积为
过水面积和泥管面积的总和:
由过水面积和泥管面积的总和求出直径为
筒壁厚为250mm, 取管径为900mm。
进行校核:过水面积为
流速为
。
筒上有8个小孔 ,孔面积为S2= ,所以 。
二沉池采用的是ZBX型周边传动吸泥机,稳流筒的直径为3880mm。
取稳流筒出流速度为0.1m/s,
则过水面积为
稳流筒下部与池底距离为
所以稳流筒下部与池底距离大于0.2m,即符合要求。 2.10配水井
配水井设计为马蹄形,在外围加宽700mm为污泥井。
时间取3分钟
流量为
取配水井直径为D=3000mm
则配水井高度
其中,设计水深为7.0m,超高为0.6m。 2.11出水部分单池设计流量:
出水溢流堰设计
(1) 堰上水头 H=0.05mH2O (2) 每个三角堰的流量0.783L/s (3) 三角堰个数
因此取n=223(个) 2.12排泥部分
回流污泥量为 剩余污泥量为
因为剩余污泥量小,所以忽略不计,即总污泥量为0.188m3/s。 取流速为0.8(m/s)
直径为
取直径为D=400mm
校核:流速为
0.6<0.75<0.9 因此符合要求。
综上, 二沉池采用的是ZBX型周边传动吸泥机
污水处理厂设计内容范文第4篇
医疗废水处理项目
技 术 文 件
*****环保集团公司
*********综合环保设备厂
电话: E-mail:
目 录
一、污水处理进出水水质、水量、及工程范围....................... 2
二、设计依据...................... ........................... 3
三、性能特点....... ............ ......... .............. 3
四、工艺流程说明............................................................. 4
五、技术性能参数............................................... 7
六、设备供货清单............................................... 15
七、处理构筑物对污染因子的去除率预测........................... 18
八、设备制造及现场运行试验项目................................. 19
九、防腐措施................................................... 20
十、环境效果与运行经济分析..................................... 20 十
一、电器控制................................................. 21 十
二、施工工期................................................. 21 十
三、二次污染的防治........................................... 22 十
四、包装、运输及储存方案..................................... 23 十
五、质量保证方案............................................. 25 十
六、售后服务及培训计划....................................... 27 十
七、图纸 .................................................... 28
一、 污水处理进出水水质、水量、及工程范围
1、医院污水处理系统进出水水质 COD5(mg/l) 150~300 1 BODcr(mg/l) 80~150 进水水质 (mg/L) SS(mg/l) 40~120 参照同类行业及
《医院污水处理技术指南》 COD5 250 总大肠菌群数 5000 个/L 2 出水水质 (mg/L) 肠道致病菌
及结核杆菌 不得检出 《中华人民共和国医疗机 构污染物排放标准》 (GB18466-2005)
2、设计水量
1) 设计床位: 1200 床 2) 人均设计水量: 250L/床 3) 日均水量: 300m3/D 4) 处理水量: 12.5m3/h
3、工程范围
医院污水处理站的污水设备、工艺、电气的设计、选型、设备制作、 安装调试及相关的售后服务。
二、 设计依据
(1) 《中华人民共和国污染物排放二类预处理标准标》(GB8978-96) (2) 《医疗机构水污染物排放标准》(GB 18466-2005)
(3) 《医院污水处理技术指南》(国家环境保护部文件 <环发2003 >197 号)
(4) 《医院污水处理设计规范》(CECS 07:2004) (5) 《室外排水设计规范》(GBJ14-87)1997 年修改版
(6) 《建设部民用建筑生活污水处理工程设计规定》(DBJ08-71-98) (7) 《城市区域管网环境噪音标准》(GB3096-93) (8) 《城镇污水处理厂污染物排放》(GB18918-2002)
三、 性能特点
1、 采用生物接触氧化+二氧化氯消毒技术,耐冲击负荷高,处理出 水稳定;
2、 工艺技术简单可靠,操作简便,对操作人员要求一般;
3、 本工艺采用地埋全混凝土结构,土建投资低于其他方式的结构;
4、 所选水处理材料均为本厂原产优质材料,厂家直销,取消中间销 售渠道;
5、 机电设备为国内合资或优质名牌,产品性能可靠,售后服务周到。
四、 工艺流程说明
4.1.工艺方案的选择
医院污水与生活污水的区别在于前者含有大量的病原体如病菌、病毒 及寄生虫卵等,因此采用的处理方法基本上与生活污水相同,对于消毒这 一环节则要严格把关。本方案采用目前已广泛应用的接触氧化法和延长氯 化消毒时间的措施来处理医院污水。 4.2.工艺流程: 医疗综合废水 格 栅 调节池 提升泵 水解酸化池 接触氧化池 二沉池 消毒池 达标排放 栅渣焚烧 生化污泥池 回流泵 风 机
4.3.废水工艺流程说明 4.3.1 格栅
污水中含有大量的悬浮漂浮物,这些物质容易积累并最终堵塞工艺设 备和构筑物,所以必须采用拦截设备。本工艺中需设置格栅一道。格栅的 安装角度为60°,栅条间隙10mm。 经格栅拦截的悬浮漂浮物定期进行工 人清理。格栅井采用钢砼结构,尺寸:长宽高=15006002200mm。 同时,针对医院中的厨房餐饮废水,在排入污水处理站之前,必须进 行隔油处理。由业主建设混凝土隔油池(参照给排水手册标准图集),经过 隔油后的废水,流入调节池。废油定期清捞外运。 4.3.2 调节池
废水来水水质、水量不均匀,为使后续处理工序长期稳定运行,避免 水量冲击导致处理效率和处理稳定性降低,需设置具有调节水质、水量和 污水收集功能的调节池,来调节污水的波峰波谷。本工艺中调节池为钢砼 结构,最大有效容积110m3,最大水力停留时间为8.0h。调节池基本处于 缺氧状态,同时起到予酸化和去除部分污染物的作用。为了防止污水的SS 在调节池沉淀,特在调节池中设置穿孔曝气进行间隙空气搅拌,同时有起 到混合的作用。 4.3.3 厌氧/好氧生化池
废水中有机成份较高,BOD5/CODcr=0.5,因此采用生物处理方法大幅 度降低污水中有机物含量是最经济的。
污水经提升至平流式水解酸化池内,水解酸化池内填装生物填料,生 物填料上生长着大量的厌氧微生物,主要起吸附、分解有机物的载体作用。 利用厌氧菌可降解大部分高浓度有机物。有机物分解后形成的CH
4、N2 等 气体;处理后的污水自流进入接触氧化池。
本工艺中水解酸化池为砼结构,有效尺寸为:1240030004000mm。 总有效容积130m3,总水力停留时间10h。
好氧生化工艺即生物接触氧化工艺,具有负荷高、不产生污泥膨胀、设 施体积小、运行稳定可靠、管理方便等优点。接触氧化池内溶解氧控制在 3.0g/l 以上,整个生化处理过程是依赖于附着在填料上的多种好氧微生物来 完成的。
厌氧水解出水至生物接触氧化池处理,使有机物质得到进一步氧化分 解,同时在碳化作用趋于完全的情况下,通过好氧生物接触氧化作用,将 污水中的有机物质转化为NO2-N、NO3-N。
接触氧化池采用生物接触氧化法,该方法具有生物量高,容积负荷大, 耐冲击负荷能力强,不产生污泥膨胀,剩余污泥量少,处理效果稳定,操 作管理方便等优点。接触氧化池内配置新型组合填料,以此作为好氧微生 物的载体。此填料的比表面积大,易挂膜和脱膜,具有一定的柔弹性,不 易结团。接触氧化池出水进入沉淀池进行沉淀。
接触氧化池为砼结构,1240030004000mm。总有效容积110m3, 总水力停留时间8.5h。填料体积负荷为0.6~0.9kgBOD5/m3.D。 4.3.4 二沉池
氧化池处理后的出水含有脱落生物膜和其它少量前处理无法去除的细 颗粒杂质,所以废水必须进行固液分离。二沉池采用竖流式,有效尺寸为: 600025004000mm,有效面积15m2,表面负荷0.83m3/m2h。为提高沉 淀效果,二沉池中污泥采用污泥泵提升,有效去除沉淀污泥。 4.3.5 消毒池
沉淀后污水进入消毒池,加入消毒杀菌剂的进行消毒处理。有效尺寸为: 300025004000mm。有效容积:22.5m3。停留时间:1.5HR。 4.3.6 污泥处理
沉淀污泥经过提升进入污泥池,通过浓缩作用后,定期外运。
五、 技术性能参数
1、格栅
型 号: ZG-600 型 安装位置: 格栅槽 数 量: 1台 格栅宽度: 600mm 材 质: 机架Q235 设备防腐: 环氧煤沥青 栅条间隙: 10mm 安装角度: 60°
生产厂家: 江苏环发环保集团公司宜兴市高塍综合环保设备厂
2、调节池 数 量: 1只 结 构: 钢砼结构
外形尺寸: 890050004000mm 有效容积: 110m3 停留时间: 8Hr 配套附件: 穿孔曝气系统(UPVC)
附件厂家: 江苏环发环保集团公司宜兴市高塍综合环保设备厂 制造厂家: 用户自建
3、提升泵
型 号: 50WQ15-12-1.1 安装位置: 调节池 数 量: 2台 流 量: 15m3/h 功 率: 1.1KW 扬 程: 12m 转 速: 1420r/min 电 源: 380V/50HZ 口 径: DN50 运行方式: 一用一备,交替运行 生产厂家: 上海连成或同类品牌
4、预曝气风机 型 号: HZ-50S 安装位置: 设备间 数 量: 1台 风 量: 1.05m3/min 功 率: 1.5KW 风 压: 0.4kgf/cm2 转 速: 540rpm 效 率: 55.3% 电 源: 380V/50HZ 口 径: DN40 运行方式: PLC控制 间隙运行
附 件: 止回阀、减压系统、减震装置、压力表 生产厂家: 优纳特机械有限公司
5、水解酸化池 数 量: 1只 结 构: 钢砼结构
外形尺寸: 1240030004000mm 总有效容积: 130m3 停留时间: 10Hr 水流方式: 平流折板式 集水方式: 三角堰集水 生物填料: 组合填料 型 号: YDT-150 数 量: 75m3 规 格: Φ150-80 材 质: PP 安装方式: 梅花形悬挂 安装间距: 150150mm 填料高度: 2000mm 比 重: 3.5-3.7kg/m3 表 面 积: ~2000 m2/ m3 成膜重量: 459kg/ m3
配套设施: 填料支架、三角堰集水槽、空气搅拌系统 附件厂家: 环源环保 生产厂家: 用户自建
6、接触氧化池 数 量: 1只 结 构: 钢砼结构
外形尺寸: 1240030004000mm 有效容积: 110m3 停留时间: 8.5Hr 水流方式: 平流式 集水方式: 三角堰集水 生物填料: 组合填料 型 号: YDT-150 数 量: 60m3 规 格: Φ150-80 材 质: PP 安装方式: 梅花形悬挂 安装间距: 150150mm 填料高度: 1500mm 比 重: 3.5-3.7kg/m3 表 面 积: ~2000 m2/ m3 成膜重量: 459kg/ m3 曝气方式: 微孔曝气 曝气头规格: BZQ-190 曝气头材质: 进口优质橡胶 曝气头数量: 110 套 曝 气 管: UPVC 服务面积: 0.4~0.6m2/只 附 件: 进出口法兰、固定装置
配套设施: 三角堰集水槽、曝气系统、填料支架 附件厂家: 环源环保 生产厂家: 用户自建
7、氧化池曝气风机 数 量: 2台 型 号: HC-80S 风 量: 2.65m3/min 功 率: 4KW 风 压: 4000mmH2O 电 源: 380V/50HZ 口 径: DN80 运行方式: PLC控制 交替运行 附 件:
消声装置、止回阀、空气净化装置、减压系统、减 震装置、压力表
生产厂家: 优纳特机械有限公司
8、二沉池 数 量: 1只 结 构: 钢砼结构
外形尺寸: 600025004000mm 有效面积: 15m2 表面负荷: 0.83m3/m2.h 停留时间: 1.5Hr 沉淀方式: 竖流式辐射沉淀 集水方式: 三角堰集水 排泥角度: 60° 提泥方式: 压力提升
配套设施: 进水导流筒、三角堰集水槽、可调节堰板 附件厂家: 江苏环发环保集团公司宜兴市高塍综合环保设备厂 生产厂家: 用户自建
9、消毒池 数 量: 1只 结 构: 钢砼结构
外形尺寸: 300025004000mm 有效容积: 22.5m3 停留时间: 1.0hr 生产厂家: 用户自建
10、消毒装置 型 号: KWII-7 数 量: 1套 消 毒 剂: ClO2 ClO2 发生量: 400g/h 制造方式: 电解法 工作温度: 5~40℃ 功 率: 4.5KW 制造介质: 食盐 稀释水压力: 0.25~0.44MPa 药剂投加量: 15~30g/m3 规 格: 160010001450mm 安装方式: 柜 式
生产公司: 江苏环发环保集团公司宜兴市高塍综合环保设备厂
11、污泥池 数 量: 1只 结 构: 钢砼结构
外形尺寸: 300025004000mm 有效容积: 20m3 附属设施: 穿孔曝气管
附件厂家: 江苏环发环保集团公司宜兴市高塍综合环保设备厂 生产厂家: 用户自建
12、污泥泵
型 号: 50WQ15-8-0.75 安装位置: 污泥池 数 量: 1台 流 量: 15m3/h 功 率: 0.75KW 扬 程: 8m 转 速: 2825r/min 口 径: DN50 运行方式: 间隙运行
启 动: 预编程序控制,时间控制,低液位保护 附 件: 配套管阀件
生产厂家: 上海连成或同等产品
13、控制柜 型 号: DQK型 数 量: 1套 电器元件: 正泰集团
编程控制器: 西门子PLC (S7-200) 外形尺寸: 1800800600 功 能:
液位断水控制、设置自动、手动两种控制方式、全 套系统连锁运行
生产厂家: 江苏环发环保集团公司宜兴市高塍综合环保设备厂
〖甘肃省妇幼保健院医疗废水处理项目标技术文件〗
六、 设备供货清单
序号 名 称 型号规格 数量 主要参数 备注 1. 格 栅 ZG-600 1 台 栅隙:10mm 环源 2. 调节池曝气系统 PQ-A 1 套 UPVC 环源 3. 调节池液位控制器 UQK 1 套 连成或同等
4. 调节池曝气风机 HZ-50S 1 台 Q=1.45m3/min N=1.5KW 优纳特机械 5. 提升泵 50WQ15-12-1.1 2 台 Q=15m3/h H=12m 连成或同等 6. 自耦合装置 80GAK 2 套 配套 上海连成
7. 水解酸化池填料 YDT-150 75m3 Φ150-80PP 环源 8. 水解酸化池填料支架 10槽钢/Φ12 罗纹钢 1套 马钢 9. 接触氧化池填料 YDT-150 65m3 Φ150-80PP 环源
10. 接触氧化池填料支架 10槽钢/Φ12 罗纹钢 1套 马钢 11. 接触氧化池曝气装置 PQ-O 110 套 BZQ-190 环源 12. 曝气管道 PG-12.5 1 套 UPVC 环源
13. 曝气风机 HC-80S 2 台 Q=2.65m3/min N=4KW 优纳特机械 14. 二沉池出水堰板 300δ4mm 2500mm PVC 环源 15. 消毒装置 KWII-7 1 套 Q=400g/h N=4.5KW 环源 16. 余氯测定仪 CL7685 1 套 意大利 17. 氯气泄漏仪 CIT3000 1 套 美国
18. 污泥池曝气系统 PQ-N 1 套 UPVC 环源
19. 污泥泵 50WQ15-8-0.75 1 台 Q=15m3/h H=8m 上海连成 20. 脱臭系统 TC-12.5 1 套
21. PLC 控制柜 PLC控制柜 1台 西门子PLC(1800800600) 环源 22. 电线电缆 国标 1套
23. 系统内管阀件 国标 1套 至污水站出口1 米 24. 油漆防腐 环氧煤沥青 1套
以上设备由设备厂家提供
二)、构筑物清单
序号 名称 外形尺寸 数量 备注 1. 格栅槽 15006002200mm 1座 砼结构 2. 调节池 890050004000mm 1座 砼结构 3. 水解酸化池 1240030004000mm 1 座 砼结构 4. 接触氧化池 1240030004000mm 1 座 砼结构 5. 二沉池 600025004000mm 1 座 砼结构 6. 消毒池 300025004000mm 1 座 砼结构 7. 污泥池 300025004000mm 1 座 砼结构
8. 风机房 400030004000mm 1座 _靇湝靇___砼结构 9. 消毒间 400030004000mm 1座 砼结构 10. 值班室 400030004000mm 1座 砼结构
注:污水处理构筑物由业主自建。
七、 处理构筑物对污染因子的去除率预测 构筑物名称 项目 CODcr SS 进水(mg/l) 300 120 出水(mg/l) <285 110 格栅 调节池
去除率(%) 5 >9 进水(mg/l) 285 110 A/O 生化池 出水(mg/l) <100 110 去除率(%) >65 / 进水(mg/l) <100 ~110 二沉池 出水(mg/l) <100 <40 去除率(%) / >64 进水(mg/l) <100 <40 消毒 出水(mg/l) <100 <40 去除率(%) / / 出水指标 mg/l 250 70
八、 设备制造及现场运行试验项目
序号 出公司试验项目 现场试验项目 1 设备外形尺寸及外观检验: 按图核对
设备外形尺寸及外观检验: 按图核对
2 噪声测定 风机的性能试验 3 设备空载运行:检验是否达设计要 求及设定有关技术参数. 整体联动试运行:检验是否达设计要求 4 水质测定:是否达到设计的数据
九、 防腐措施
在本工艺流程中,采用了一些钢制件材料,由于钢制件长期浸泡在污水 中,为了延长其使用寿命,我们采用国内比较先进的环氧煤沥青复合进行防 腐,它能耐一般的酸碱、耐老化、耐冲涮,,防腐寿命可达35~40 年以上。
十、 环境效果与运行经济分析
1 药剂类: 处理每吨水的消毒剂成本为:0.06 元/吨水。 则:处理每吨水的消毒剂成本为:0.06 元/吨水。 2 电费
设备总整机容量为 16.95kw,实际运行功率为9.95kw,处理每m3 污水 耗电为0.96kw,电价按0.8 元/度计,则处理每m3 污水的费用为0.64 元。 (电价按行业常规标准计算) 3 人工工资
污水处理站定员 1 名(兼管),平均月工资1200 元/名计, 则: 1200÷30÷300=0.13 元
以上综合:药剂费+电费+人工费=0.83 元 即处理每m3 污水的总费用为0.83 元。
十一、 电器控制
为了减轻工人劳动强度,便于操作管理,设备采用微机预编程序(PLC) 控制,采用西门子S7-200 PLC 微机自动控制装置,控制水泵、风机定时自 动切换,当水泵或风机发生故障时,即声、光报警,并且自动切换至另一台 水泵或风机工作。提升泵(包括污泥泵)采用液位控制泵的启动和停止,当 水位达到高位时,水泵启动;水位达到超高位时,备用水泵启动并发出报警, 从而防止调节池内污水外溢;当达到低水位时,水泵停止工作。系统具有过 流、过载、欠压、断相等完善的保护功能,能适应不同的要求,确保电气设 备的安全可靠运行。
接触氧化池的最低液位一般控制在正常液位的70%左右,以确保微生物 的正常生长。 设备总整机容量为16.95kw,实际运行功率为9.95kw,电源为三相五线 制,动力工作电压为三相380 伏,二次线路控制电压为220 伏。控制柜设置 手动和自动转换控制,设备间联锁,电器设备短路和过载保护装置。
十二、 施工工期
1、 合同生效后一周内提供设备流程工艺图、平面图、剖面图以及土建施 工工艺图。
2、 设备的制作自合同签定生效后60 天完成。 3、 土建完成具备进场条件后设备安装30 天。
4、 系统调试(具备调试条件、温度适宜的情况下包括微生物培养、驯化、 监测验收)70 天。
十三、 二次污染的防治
1、降噪音措施
在污水处理设备中,噪音比较大的主要是风机,为此,我们采取一系列 的噪音措施,首先选用日本独资的低噪音罗茨风机,该风机的主体噪音约为 60 分贝;其次设置消音器和阻挠接头,以减少风机产生的噪音;再次在风机 房内四周设置吸音材料,污水处理站内的噪音可以降低在55 分贝以下。
2、污泥消化措施
污泥经污泥池沉淀浓缩处理后,用环卫车定期外运,防止污泥外流。上 清液回流至调节池重新处理。
十四、 包装、运输及储存方案
1) 包装、运输和储存 我公司所供设备部件,均遵照国家标准和有关包装的条件进行,并根据 不同货物的物性和要求,采取措施,对设备进行妥善的油漆或其它有效的防 腐处理,以适应运输、卸货以及露天堆放的需要,从而防止雨雪、受潮、生 锈、腐蚀、受震以及机械和化学引起的损坏。
所供技术文件均妥善包装,具有承受运输和多次搬运,防止潮气和雨水 的浸蚀的施措。每个技术文件档案袋装有详细目录清单。
为防止设备器材被窃或受腐蚀因素,设备到场后应妥善保管,小型设备尽 量进入库房保管,大型设备现露天堆放时应盖防水薄膜或设在临时库棚内, 切忌受冻、曝洒及淋雨。 2) 标志
2.1 设备标志:每台设备都有固定铭牌,确保铭牌不易损坏。标志醒目, 整齐、美观。 2.2 包装标志
2.2.1 提供的设备(无论装在箱内或成捆的散件)的包装,均贴有标明合同 号,设备名称,部件名称和组装图上的部件位置号的标签,备品配件和专用 工具还标明“备品配件”和“工具”的字样. 2.2.2 对装箱供给的设备,在每个箱子的两面用油漆写上如下内容: 合同号,装运标志,收货人代码,设备名称和项目号,箱号(箱的序号/ 设备总件数),毛/净重,外形尺寸,长宽高。
按照设备各特性和不同的运输及装卸要求,在箱上明显位置标上“小 心” 、“向上”、“防潮”、“勿倒”等通用标志。
包装箱连续编号,而且在全部装运的过程中,装箱编号的顺序始终是连贯 的 。
2.3 运输
2.3.1 汽车运输每批设备发出前24 小时内,通知业主。 通知中指明: 收货单位 发货单位 合同号 设备号 箱号 件号 货物发运日 目的地
货物名称及采购单编号 货物总毛重/净重 货物总体积 总包装件数 起重标识
十五、 质量保证方案
(1).质量保证
1、钢设备的检验按照《焊缝射线探伤标准》、《焊接工艺评定》、《钢结构 工程施工及验收规范》、《现场设备工艺管道焊接工程及验收规范》。
2、采用的各种配件和电机,都按照质量管理的要求采购,保证质量。
3、确保出水水质达到中华人民共和国(GB18918-2002)《城镇污水处 理厂污染物排放二级标准》。 (2)设备的监造及见证、验收
1、 设备的试验、验收严格按照国家标准和规范以及贵方的特殊要求进 行。业主代表可参与有关的监造、试验、验收。
2、 设备的试验及验收标准、验收方法、要求均按照国家相关标准进行。
3、 设备在进行各项检验与试验前五天,我方将所检验的项目通知业 主。
4、 在设备的制造过程中,我方将邀请业主派代表对设备的制造和设备 发货前的监造及检验,并免费向业主提供相应的资料。
5、 在业主代表在我方时,我方将为他们提供工作和生活方便。
6、 我方在设备检验时,若业主未能及时到场,我方的检测结果仍有效。 同时业主事后可了解检测报告和结果。
7、 尊重业主提出的意见,并积极作相应的整改。
8、 无论业主是否参与监造及发货前的检验,我方均对设备质量负责。
9、 设备交付使用时,我方将向业主移交有关质量证明文件。
10、 货到业主方后,业主通知我方,我方将在壹周内派员到现场和业主 一起对设备进行清点检验。
(3)设备制造的标准
1、GB150-1999 《钢制压力容器》
2、JB/T4735-1997 《钢制焊接常压容器》
3、HG20584-1998 《钢制化工容器制造技术要求》制造、 检验和验收
4、JB/T4709-92 《钢制压力容器焊接规程》
5、JB4297 《涂漆技术条件》
6、JB2759 《机电产品包装通用技术条件》
7、GB191 《包装储运图示标志》 从订货之日至设备开始制造期间,我方接受业主提出因规程、规范和 标准发生变化而产生的补充要求。同时,我方及时以书面方式通知业主有关 规程、规范和标准发生的变化。
(4)、设备的制造完全满足技术规程规范的要求。 (5)、设备的质量保证:
1、我厂严格按照ISO9001 质量认证体系中的要求,生产制作设备,并对 设备的全部零部件进行严格的检验,确保制造满足设计要求的优质产品。
2、设备交付使用时,向业主提供下列有关质量保证的各项文件: a、产品的检验报告书;
b、主要零部件的材料合格证及检测报告; c、主要零部件检验合格证书;
d、外购配套件的合格证、说明书及检验报告; e、设备试运行后,提供完整的试验报告;
3、设备在合同规定的质保期内,因制造质量问题而发生的损坏,或不能进 行正常工作时,我厂免费为业主修理或更换零部件。
十六、 售后服务及培训计划
(1).质量保证
1、钢设备的检验按照《焊缝射线探伤标准》、《焊接工艺评定》、《钢结 构工程施工及验收规范》、《现场设备工艺管道焊接工程及验收规范》。
2、采用的各种配件和电机,都按照质量管理的要求采购,保证质量。 (2).售后服务
1、本工程实行“交钥匙”工程,工程从设计、制作、安装、调试到验收, 全由我公司负责。
2、对操作人员进行岗位操作培训,包括处理工艺的介绍。并提供设备 操作维护规程。
3、我公司对工程进行跟踪服务,对设备的运行情况进行跟踪了解,并 定期进行技术回访。
4、如用户需要我公司派人,我公司技术人员确保在72 小时内到达。
5、我公司有专人负责工程的售后服务工作。
污水处理厂设计内容范文第5篇
照片左一为辽宁省城乡规划设计院给排水设计所副所长兼主任工程师苏君先生,右一为本文作者范勇
城市污水处理厂作为大型市政公用项目,需要大笔资金投入。如何用好每一笔钱,使资金投入发挥最大的社会效益和环境效益,是城市污水处理厂前期工作的重点。
城市污水处理厂前期工作一般包括项目建议书、预可行性研究和可行性研究。某些项目由于情况比较特殊,程序可以适当简化,直接作可行性研究报告,以可研报告代替项目建议书。
作为建设项目前期工作的核心,可行性研究的主要任务是:进行充分的资料收集、分析和现场调研,对拟建项目建设的必要性、实施的可行性、技术的可靠性以及经济的合理性进行多角度的综合的分析论证,在多方案比较的基础上,提出最适合当地的推荐方案。由于在可行性研究阶段,污水处理厂的规模、处理标准、工艺方案、选址、工程投资等等均已基本确定,因此,可行性研究是工程建设前期工作中最为关键的环节。可行性研究的成果,将直接影响到政府有关部门的决策。
近几年,由于国家加大了对环保的资金投入,同时,各地政府部门的环保意识不断加强,认识到环境保护和经济发展是相辅相成的,是可持续发展的有力保障,发展经济和保护环境是两条腿走路,缺一不可。各地相继兴建了一批污水处理厂,同时,更多的城市污水处理工程提上议事日程。在这样的大环境下,笔者有幸参与了多座污水处理厂工程的设计工作,也积累了一些心得体会。成功的可行性研究,需要各部门、多工种的通力协作,一般来说,工艺作为牵头工种,需要更多地投入。要提交一份高质量的可行性研究报告,有一些设计要点需要特别注意:
• 资料收集与分析
可行性研究阶段需要收集大量的资料并加以分析,一些需要收集的主要资料,包括污水处理厂所在地的自然条件、城市社会经济概况和规划资料、污染现状等等。
• 自然条件
自然条件包括:
• 气候条件:如风向、气温、湿度、降水等;根据当地常年主导风向,进行污水处理厂总图布置,将厂前区布置在常年主导风向的上风向,减少污水处理厂臭气对厂前区的影响。气温条件直接影响到曝气量的计算以及曝气方式的选取,设计最低水温影响到反应池的容积计算,冻土厚度影响到工艺管线的埋设深度以及土建抗冻设计等等。
• 河流水系:对当地的河流水系资料应有所了解。包括受纳水体的功能要求、类别、水文资料等等。由于许多情况下,环评报告和可行性研究基本上是同步进行的,在来不及拿到环评报告的情况下,可以参照受纳水体的功能要求和类别,暂定污水处理的排放标准。待拿到环评报告及批复时,再作调整。受纳水体的水文资料直接影响到污水处理厂高程设计,是十分重要的基础设计数据。通常情况下,设计考虑污水在进水泵房经一次提升后,藉重力依次流经各处理构筑物后,排入受纳水体。有时,由于受纳水体的高水位远远高于常水位,经技术经济比较后,也会采取设出口泵房二次提升排放的方式。在常水位时,尾水依然藉重力排放,受纳水体水位达到一定标高时,开启出水泵,尾水经出口泵房提升排放。
• 地形地貌:可以根据服务范围内的地势走向及排放水体的方位,布置厂外污水管网的走向,减少污水提升泵站的建设,节约工程投资。
• 地质概况和地震区划:在没有地质钻探资料时,可以参照拟建污水处理厂厂址邻近地区的工程地质资料,进行土建工程的可行性设计。另外,可以查阅 2001 年 8 月 1 日 实施的《中国地震动参数区划图》,得到当地的地震动峰值加速度以及地震动反应谱特征周期,用于结构抗震设计。
• 城市社会经济概况及规划资料 城市社会经济概况包括:
• 人口:尤其是服务范围内的现状人口和规划人口,与人均生活用水指标一起,决定了污水处理厂服务范围内的生活污水量,从而影响到污水处理厂规模的确定。
• 现状人均生活用水量和规划人均生活用水量,一般情况下,统计部门有现状人均生活用水量的统计数据,如果没有,也可以根据供水量和服务人口计算得出。如果没有规划人均生活用水量,可以参照经济发展程度类似、生活习惯类似的地区。
• 经济发展水平及发展方向:包括工业结构组成、工业用水量现状等。由于我国人均水资源并不丰富,国家鼓励发展节水型工业,鼓励工业用回用水,以减少新鲜水用量。因此,从单位工业产值耗水量来看,存在着逐年下降的趋势。随着工业产值的增长,工业耗水量的增长并不成正比。另外,各地第三产业近年来发展迅速,第三产业的用水量存在着逐年增长的趋势。许多生活水平比较好的地区,三产系数已经达到 0.3~0.5 左右。
• 城市规划资料:包括城市总体规划、排水专业规划、防洪规划等。城市总体规划包括了上述人口、经济发展、用水量指标等,同时,可以看出污水处理厂服务范围内的土地的规划功能。从排水专业规划上,可以看出城市排水系统服务范围的划分和排水体制。对于没有排水专业规划的地区,需要结合可行性研究,在可研报告中提出污水服务范围的设想及采用何种排水体制,合理确定污水处理厂服务范围、系统布局和处理规模。从防洪规划上了解拟建污水处理厂厂址地区的防洪水位,厂区设计地坪标高应满足防洪排涝的要求,同时,高程设计中应考虑洪水位时的尾水排放。有可能的话,排放口的设计还需考虑规划河床断面和规划蓝线以及河道航运功能的要求,当然,这部分工作也可以在初步设计阶段进行。
• 污染现状
污染现状方面的资料包括:
• 河流湖泊的污染现状:由于我国过去比较片面重视发展经济,环保方面的欠账比较多。有资料表明,我国由于水质污染严重而不能用于灌溉的河段约占 22.3% , 45% 的河段鱼虾绝迹;全国大型淡水湖泊和城市湖泊、水库均达到中等以上污染; 1996 年,《国务院关于环境保护若干问题的决定》提出,到 2010 年,我国的环境质量要有根本改善,首批把淮河、辽河、海河和太湖、滇池、巢湖列为国家污染治理的重点,并要求在近期,主要城市的水环境质量达到国家规定的标准。在污水处理厂工程可行性研究阶段,需要论证污水处理厂工程建设的必要性,以及工程效益分析。对照水体污染现状及规划水环境质量,要用发展的眼光来看问题,对于污染现状比较严重的情况,分析污水处理厂工程的建设对改善水环境的贡献。对于现状水质较好的情况,污水处理厂的建设是一种防患于未然的措施。过去,我们已经走了一段先污染再治理的弯路,现在,我们已经从中吸取了教训,认识到经济发展与环境保护需要齐头并进,要走可持续发展之路。
• 现状污水量:虽然污水处理厂的最终规模是根据规划污水量确定的,但现状污水量却直接影响到一期工程规模。根据一次规划、分期实施的原则,可行性研究阶段需要根据污水厂最终规模和现状污水量,经分析比较后,提出一期工程实施规模。一期工程的规模,既要满足近期污水处理的需要,同时又要适当留有发展余地,使污水处理厂建成后,一方面,在几年之中不需要马上扩建,另一方面,又不会出现污水量常年达不到设计处理能力的情况。
• 现状污水水质:现状污水水质对污水处理厂设计进水水质有很大的参考价值。由于各个地区排水体制、经济发展水平以及生活习惯的不同,各地的污水水质不尽相同。同时,对进水水质指标的化验分析,有助于选择合适的污水处理工艺。
• 污水处理厂建厂条件
污水处理厂建厂条件包括是否有建厂用地以及厂址的选择、外部供电供水供热以及通讯条件、建厂资金的来源等等。
• 厂址的选择:污水处理厂厂址的选择是工程前期的重点之一,总的原则是符合城市总体规划和排水专业规划;与污水收集处理系统的走向一致,使大部分污水可以无需提升自流到厂;靠近受纳水体,宜设置在城镇水体的下游,排放口的设置应考虑尾水排放对上下游取水口的影响为最小,同时,受纳水体要有足够的环境容量,尾水排放不至于明显影响该水域的水质状况;拟建厂址四周应有充足的防护距离,尽量减少污水处理厂噪声和臭气对周围环境的影响,一般情况下,有 200~ 300 米 绿化隔离带是比较理想的,同时,有扩建工程用地,需要引起注意的是,远期扩建工程用地须提请规划部门予以保留;
• 供电供水供热和通讯:污水处理厂作为需要连续运行的重要的城市基础设施,供电方面需要有保障。通常,需要供电部门提供从不同的变电站引来的两路常用电源,如果不能提供两路电源,而污水处理厂又不允许中断运行的情况下,可以在厂内自备燃油发电机,以备不时之需。污水处理厂生产生活需要一定量的自来水。污水处理厂与外部联系及内部通讯需要电话线路。对于我国北方地区,冬天需要采暖,如果厂址位于城市热力网覆盖范围之外,需要在厂内考虑建设锅炉房。 • 资金来源:过去,污水处理厂的建设比较多的是依靠财政拨款,近几年污水处理厂建设资金的筹措方式越来越多了,有利用世界银行、亚洲开发银行贷款的,利用外国政府贷款的,也有以 bot 方式建设的。资金来源方式直接影响到技术经济分析,因此,需要了解清楚。
• 现场调研
资料的收集分析是可行性研究阶段的工作重点之一,但现场调研同样是不可或缺的,资料的收集分析是现场调研的基础,而现场调研可以印证收集到的资料,通过现场踏勘,可以增加对城市和工程现场的直观了解,掌握一些文字资料上没有反映出来的问题。通常,对于污水处理厂工程(包括厂外配套收集管网),需要沿拟铺设管道的道路进行现场踏勘,印证现状管线资料、了解是否有铺管条件、对交通的影响等等;需要到拟建厂址进行现场踏勘,了解厂址现状和周边情况。有时,可以对当地城市污水进行采样分析,以指导工程设计。对于重大工程,还需要进行一系列的试验,以选取合适的处理工艺。
• 方案比选
在资料收集分析和现场调研过程中,污水处理厂的近远期规模、厂外管网的走向、厂址、受纳水体、处理程度等已经初步得到解决。接下来,就是选择处理工艺了。由于推荐工艺方案直接影响到投资、运行维护费用、操作管理是否简单可靠,所以,需要进行多方案比选,选择最适合该工程的处理工艺。影响处理工艺选择的因素很多,通常有以下几点:
• 处理程度:上文已经提到了,处理程度通常经过环境影响评价之后,由环保部门提供。但是在很多情况下,环评与可研是同步进行的,此时可以参照受纳水体的功能要求和分类,暂定处理水排放标准,待环评批复之后,再作调整。需要引起注意的是,我国某些地区根据本地区的实际情况,制定了地方性的排放标准,一般来说,地方性的排放标准要严于国家标准,也就是说对于同样的水体功能和分类,地方标准要求的出水指标要高于国家标准,此时,应执行两种标准中较严格的指标。根据处理程度,可以相应地在一级处理工艺(包括一级加强)或二级处理工艺中进行比选。
• 原污水水质:通过对原污水水质的分析,选择合适的污水处理工艺。例如,对于同时需要除碳和脱氮除磷时,首先,需要对进水的可生化性进行分析, bod 5 /cod 值评价污水的可生化性是广泛采用的一种最为简易的方法,一般情况下, bod 5 /cod 值越大,说明污水可生物处理性越好。通常认为, bod 5 /cod 〉 0.45 ,表明污水可生化性好,在 0.3~0.45 之间,可生化性较好,在 0.2~0.3 之间,较难生化处理,小于 0.2 ,不宜采用生化处理。其次,分析生物脱氮的可能性。通常, bod 5 /tn 是鉴别能否采用生物脱氮的主要指标,由于反硝化细菌是在分解有机物的过程中进行反硝化脱氮的,所以,污水中必须有足够的有机物(碳源),才能保证反硝化的顺利进行,一般认为, bod 5 /tn>3~5 ,即可认为污水有足够的碳源供反硝化菌利用。再次,分析生物除磷的可能性。 bod 5 /tp 是鉴别能否采用生物除磷的主要指标,一般认为,较高的 bod 5 负荷可以取得较好的除磷效果,进行生物除磷的低限是 bod 5 /tp=20 ,有机基质不同对除磷也有影响。一般低分子易降解的有机物诱导磷释放的能力较强,高分子难降解的有机物诱导磷释放的能力较弱。而磷释放得越充分,其摄取量也就越大。通常情况下,生物除磷的极限为 75~80% ,如果出水磷的要求比较高,单纯依靠生物除磷满足不了出水要求,此时需要辅助以化学除磷手段,以确保出水达标排放。
• 用地条件:用地条件是方案选择的一个限制条件,如果地价比较便宜,用地限制较小,则可供选择的工艺方案范围也就比较广。如果地价较高,用地范围限制得比较小,则需要从紧凑型污水处理工艺中进行比选。目前紧凑型的污水处理工艺也比较多,如 unitank 、 msbr 系列、曝气生物滤池以及卡鲁塞尔 3000 型氧化沟等,都是可供选择的工艺方案。
• 当地运行管理水平、经验及业主意见:需要和拟建污水处理厂的运行管理部门多交流意见,了解其污水处理厂的管理经验的管理水平。设计行业作为服务性行业,设计人员应该时刻想着如何服务好业主,要多征求业主的意见。
• 方案比选及方案设计:可行性研究阶段要进行多方案比选。一般至少为 3 个,这些方案要有可比性,不是仅仅作为陪衬。在严格的方案比选址后,根据工程投资、运行维护费用、运行的可靠性、劳动强度、占地面积、业主管理经验等综合考虑后,提出推荐工艺方案,随后进行推荐方案的工程设计。
• 污泥处理方案:在推荐污水处理工艺方案的同时,需要提出污泥处理方案。污泥处理方案的推荐,需要同污水处理方案结合考虑,有时需要在厂内考虑污泥稳定措施。对于比较大型的污水处理厂,由于产泥量比较大,污泥中温消化是不错的选择,一方面,污泥经过消化,减少了污泥中的有机物含量和污泥的体积,另一方面大量杀灭污泥中的病原体,此外,产生的沼气还可以综合利用,体现了污泥处理减量化、无害化和资源化的原则。近几年,污泥用于制肥的事例越来越多。但是,污泥制肥并不仅仅是技术问题,还需要考虑市场问题。污泥肥料作为一种商品,有多大的市场?人们对污泥肥料是否接受?与其它肥料的竞争,污泥肥料的季节性销售问题以及肥料的储存,均需慎重考虑。
• 推荐方案工程设计要点
推荐工程方案设计时,在总图布置、高程设计和单体构筑物设计时,需要注意: • 总图布置分区合理、功能明确,厂前区、污水处理区、污泥处理区条块分割清楚,沿流程方向依次布置处理构筑物,水流通畅。厂前区布置在上风向,并用绿化隔离带与生产区分隔开来,以尽量减少对厂前区的影响,改善厂前区的工作条件。
• 构筑物的布置应为厂区工艺管线和其它管线的铺设留有余地,一般情况下,构筑物外墙距道路边线距离不宜小于 6 米 。
• 厂区设计地坪标高尽量考虑土方平衡,以减少工程造价,同时,满足防洪排涝要求,厂区设计地坪标高一般需高出周围地面标高 10~ 20 厘米 以上。
• 水力高程设计一般考虑进水一次提升,藉重力依次流经各处理构筑物。配水管渠的设计需优化,以尽量减少水头损失,节约运行费用。但是,水力高程设计中需考虑施工质量、构筑物不均匀沉降、管渠老化等因素,避免建成后产生水流不畅等问题。
• 对于生物除磷工艺,由于生物除磷是依靠摄磷菌过量摄取污水中的磷,生物除磷的实质是磷由污水中转移至污泥中,以剩余污泥的形式排出系统外。设计中应避免磷再次释放出来,一般不主张采用重力浓缩池的形式,而是采用机械浓缩脱水的方式,随时将排出系统的污泥进行浓缩脱水处理。特殊情况下,需要设储泥池暂时储存剩余污泥,此时,可以在储泥池内设穿孔曝气管,避免产生厌氧环境,从而避免磷的释放。
• 可研设计阶段,还要对污水处理厂的建设进度、人员编制、安全生产、消防节能列专门篇幅进行论述。某些地区可能还会要求对招投标构想进行论述。
• 结语
提交一份高质量的可行性研究报告,需要多工种、多学科的协同合作,在大量收集资料和调查研究的基础上,进行多方案的技术经济比较后,提出推荐方案,供政府部门决策。以上部分是笔者实际工作中的经验总结,不足之处,希望各位同行批评指正。
( 来源 : 中国净水技术网版权所有 , 如需转载或引用请注明出处 , 2005 年4 月30 日 )
本文作者简介: 范勇,
1969 年 6 月出生,
1993 年毕业于清华大学环境工程系,从事排水工程设计,
现担任 上海市政工程设计研究院给排水三分院副院长,
作者通讯地址:上海市中山北二路 901 号
污水处理厂设计内容范文第6篇
关键词:太湖;吴塘村;化粪池;接触氧化;人工湿地
2007年江苏省持续高温少雨,太湖水体富营养化严重,5月28日,太湖无锡段梅梁湾爆
发了大规模的蓝藻侵害,无锡市城区牵龙口水厂和南泉水厂的水源先后遭受污染而停用,严重威胁生活饮用水的安全。这次大规模的蓝藻爆发再次向人类敲响警钟,解决太湖流域的富营养化问题,寻找有效的对策,已成为迫在眉睫的重大任务。
太湖水体污染主要来源于内源和外源,内源主要是湖底淤泥和水体中营养物质;外源主要为城市生活污水、工业废水、降水等,来源众多且复杂,对太湖水体污染贡献大,因此本文主要研究外源的控制。我国有60多万个行政村、250多万个自然村,居住生活着2亿多农户[1]。全国农村每年产生生活污水约80多亿吨,而96的村庄没有排水渠道和污水处理系统,生活污水随意排放[1]。太湖周边分布着大量的农村,农村生活污水对太湖富营养化贡献较大, 图1无锡市吴塘村
并且有分布广而且分散,水质、水量波动性大,水
中氮、磷含量较高等特征。
根据目前我国广大农村地区社会经济发展状况、污水处理与水环境保护要求,农村污水
处理主要采用化粪池、人工湿地、稳定塘、土壤渗滤、生物膜法等几种适合农村实际的污水处理工艺技术[2],其中化粪池因造价低和管理方便为大多数农村所采用。笔者尝试将人工湿地和生物膜法与化粪池结合起来,设计一套适合太湖周边农村地区的生活污水处理方式。 1.研究区域的选择 2.处理工艺的选择
我国农村居住相对分散,经济力量也相对薄弱,部分经济条件比较好的农村修建的住宅大都安装了配套的卫生器具、给水管、排水管,设计了卫生间,可是缺乏完善的下水道系统 [3],大部分农村生活污水主要通过现有的截污沟渠直接排到附近水体里或者下渗至土壤里,成为水体主要的面源污染。对于农村的分散生活污水的处理方式,造价低廉、工艺简单、处理效果有保证、运行维护简便是首要的原则。目前农村实际中使用较多的污水处理技术主要有化粪池、人工湿地、稳定塘、土壤渗滤、生物膜法等。 2.1化粪池
化粪池又名殷夫池,是20世纪初德国人创造的,作为我国城镇生活污水主要局部处理构筑物被普遍采用,在消除病原体、减少污染等方面曾经发挥了巨大的作用。化粪池的功能是接收、贮存家庭生活污水。池内分为漂浮层、淤泥层和中间清水层三个区域。它除了能截留生活污水中的粪便、纸屑和病原虫等杂质的50和去除BOD的20以外、还可以减轻污水处理厂的负荷或减轻对水体的污染。沉淀下来的污泥经3~12个月的厌氧分解、酸性发酵脱水熟化后能转化为稳定状态可清掏出做肥料[4]。目前化粪池的池型主要有旧式化粪池、改良式化粪池、立体多槽式化粪池、好氧曝气式化粪池、灭菌化粪池[5]、集成式生物化粪池[6]、无害化化粪池[7]、新型生物处理化粪池[8]等,化粪池的改造具有潜力。 2.2人工湿地
人工湿地(ConstructedWetland)是人工建造的、可控制的和工程化的湿地系统,这是发达国家近十年来才兴起的生态处理法[9]。第一个完整的人工湿地试验始于1974年德国的Othfrensen湿地[10]。其基本原理是:在一定的填料上种美人蕉、富贵竹、芦苇等特定的植物,将污水投放到人工建造的类似于沼泽的湿地上,当富营养化水(如生活污水等)流过人下湿地时,经沙石、土壤过滤和植物根际的多种微生物活动,使水质得到净化[9]。
人工湿地污水处理技术可处理氮、磷含量较高的污水,还可作为二级污水处理后接的深度处理工艺。人工湿地主要分为潜流人工湿地和表面流人工湿地。按水流方向又可分为垂直流人工湿地和水平流人工湿地。处理等量的污水,潜流系统用地要比表面流人工湿地少,运行维护简单。表面流人工湿地多发的臭味和蚊蝇滋生在潜流系统中很少出现[11][12]。人工湿地的缺点是需要大量土地,并要解决土壤和水中的充分供氧问题及受气温和植物生长季节的影响等问题。
垂直流人工湿地由下行流和上行流方式的两池组成。吴振斌、成水平等人对垂直流人工湿地小试系统进行测试,对受污染地面水体中的CODcr、BOD5和TSS的去除率分别为53.6、 78.7和80.2。对细菌、总大肠菌、粪大肠菌和藻类的平均去除率分别达99.
4、85.9、 89.7和97.7。对KN、NH4+-N和TP的平均去除率分别为39.
2、16.5和25.8[13]。参考该系统进行设计,可有效降低出水氮、磷含量,不难想象最终出水能达到水功能区划的要求。 2.3稳定塘
利用稳定塘处理污水可充分利用地形,基建和维护费用低,并能实现污水的资源化,但占地面积大,处理效果易受气候影响,在我国难以普及[14]。太湖周边地区土地资源宝贵,且冬季气候较低,不利于使用。 2.4土壤渗滤
该系统将污水投配到土壤表面具有一定构造的渗滤沟中,污染物通过物理、化学、微生物的降解和植物的吸收利用得到处理和净化。该技术对悬浮物、有机物、氨氮、总磷和大肠杆菌的去除率均较高,一般可达70~90,而且基建投资少、运行费用低、维护简便,整个系统埋在地下,不会散发臭味,能保证冬季较稳定的运行,便于污水的就地处理和回用该技术具有很强的技术和经济优势[1]。但是,该技术须保证处理效果,否则容易对地下水造成污染。 2.5生物膜法
生物膜法有生物滤池、生物转盘、生物接触氧化和生物流化床四种,是分散生活污水处理主要应用的一种人工处理技术,包括厌氧和好氧生物膜两种。厌氧或好氧微生物附着在载体表面,形成生物膜来吸附、降解污水中的污染物,达到净化目的。该方法设备简单、运行成本较低,处理效率高[1]。
3.接触氧化-湿地-无动力充氧化粪池设计 3.1化粪池体积设计
根据《给水排水设计手册第2册-城镇排水》和《02S701砖砌化粪池》上相关计算公式和设计要求,化粪池最小一般不小于2m3,水面到池底距离不小于1.3m,尺长不小于1m,池宽不小于0.75m。
本设计中化粪池有效容积只考虑前两格计算,容积比为3:2,取有效池长为2.0m;尺
高1.7m,其中保护层高度400mm;池宽取0.8m。故总容积为V=2.01.70.8=2.72m3。 3.2下行流-上行流人工湿地设计
人工湿地的深度一般是按水生植物根系自然扩展的深度来设计的,多数为0.6~0.7m[15]。本设计人工湿地由串联的0.5m0.8m0.8m两个池组成。
填料:底层铺10cm厚的碎石(直径5mm左右),上层为砂(直径0~4mm)和土壤的混合,其中下行池砂土深0.6m,上行池砂土深0.5m,下行池填料高于上行池10cm。
水生植物:选择美人蕉和香蒲混合栽种。
进出水管线布置:进水干管为直径110mmPVC管,另设四根直径75mmPVC管,出水管布置方式相同[14]。
3.3结构设计和原理
笔者阅读了大量化粪池和人工湿地相关的文章,从中受到了一些启发,并尝试进行化粪 池改良设计及与人工湿地联用处理无锡市吴塘村生活污水。笔者构思的接触氧化-湿地-无动
力充氧化粪池处理流程和构造分别如图2和图3。
图2接触氧化-湿地-无动力充氧化粪池处理流程 4 1-腐化沉淀槽;2-厌氧接触氧化槽;3-最终沉淀槽; 4-下行流-上行流人工湿地;5-无动力跌水充氧槽
图3接触氧化-湿地-无动力充氧化粪池
(1)腐化沉淀槽:粪便污水及其他生活污水混合后首先进入腐化沉淀槽。该槽占总有效容
积的75,为厌氧环境,污水中的有机物在此腐化,主要去除部分BOD
5、SS和进行反硝化,污泥和比重较大的悬浮固体会沉淀到有一定的坡度底部,比重较轻的悬浮固体上浮至水面,中间层液体较原污水澄清。上层浮渣和底层污泥需定期清掏。
(2)厌氧生物接触氧化槽:该槽设在腐化沉淀槽右上侧出口前,槽中铺有厚度为20cm的填料层,填料上下为格栅,连同填料层做成盒子状,填料皆为永久性的刚性填料,无需更换,但可定期取出检查生物膜附着情况。底层和上层为直径50mm左右的鹅卵石,中间为塑料制成的多折片球型填料,材料密度要比水大,主要作用是过滤,附着生物膜,降低流速。
(3)最终沉淀槽:该槽与厌氧生物接触氧化槽用两个直径10cm的正方形孔相连,主要作用是进一步沉淀分离污水和污泥,以及去除BOD
5、SS和进行反硝化,中间层清水通过莲蓬弯流至人工湿地。该槽也需定期清掏。此外上述三槽会产生甲烷、氨气、氮气等气体,需设通风管连通,由于甲烷纯度低,气体量少且难以分离,故通过通风管直接放空。
(4)下行流-上行流人工湿地:通过前面腐化沉淀槽,厌氧生物接触氧化槽和最终沉淀槽的处理,进入人工湿地的污染物负荷将有效降低,此人工湿地由串联的两个池组成,分别为下
行流和上行流。底层铺直径5mm左右的碎石连通两池,上层为土壤和直径0~4mm的砂混
合,下行池填料高于上行池10cm,以克服人工湿地的水头损失。一般的单一垂直流人工湿地水从上往下流,出水水位大大较低,在埋深较深且出水水位较低的无动力化粪池中使用,最终出水口很可能因过低而容易被淹没,而下行流-上行流人工湿地可以克服这个不足,能够提升水位,而且众多试验表明出水效果要比单一垂直流人工湿地好。水生植物可选择美人蕉和香蒲等普遍的植物,定期收割。下行流-上行流人工湿地相当于一般污水处理的深度处理,尤其在去氮除磷有很高的处理效率。
(5)无动力跌水充氧槽:该槽相当于出水前的集水槽有集配水功能,并且与大气相通,可通过里面三层铺有鹅卵石的表面粗糙的阶梯式跌水板进行复氧,可有效抑制水的发臭和提高透明度。出水最终通过截污沟渠排至附近水体或者下渗补给地下水,大大降低了对受纳水体的污染。
3.4经济可行性分析
无锡市吴塘村几乎每户都修建有化粪池,粪便污水与其他生活污水分流排放,接触氧化 -湿地-无动力充氧化粪池无需采用好氧曝气和提升装置,仅通过污水的自流完成,无动力消耗,运行费用极低;管理方便,如普及太湖周边农村地区,当地政府环保相关部门可定期检查及安排吸粪车集中吸走底层污泥和撇去上层浮渣。接触氧化-湿地-无动力充氧化粪池的建造费用与传统旧式化粪池相比略高一些,但两者有着几乎相同的运行管理费用,对于吴塘村乃至太湖周边农村仍然是可承受的。 4.总结
本设计着重创新,将人工湿地和生物膜法与化粪池结合起来,设计出生物接触氧化、人工湿地和无动力跌水充氧三者联合的接触氧化-湿地-无动力充氧化粪池。构思切实可行,今后有机会将试点进行试验而不断改进。通过对比其他相似的化粪池池型和人工湿地试验结果,不难想象接触氧化-湿地-无动力充氧化粪池出水水质较好,满足水功能区划的要求,甚至能达到一级B标准。从而可以减少对太湖周边地区地表水环境和地下水的污染,同时还能缓解太湖的富营养化问题,保障太湖流域的经济持续繁荣发展。
参考文献







