三个数的基本不等式范文第1篇
1.知识与技能: 掌握比较法证明不等式的方法。
2.过程与方法: 通过糖水(盐水)不等式引入比较法;通过对比较法的两种形式,加深对比较法的理解。
3.情态与价值:体会数学在日常生活中无所不在,培养数学兴趣。
(二)教学重、难点
重点:掌握比较法证明不等式的方法。 难点:比较法证明不等式的方法中的变形。
(三)教学设想 [创设问题情境]
一、作差比较法
3322例1 已知a,b都是实数,且ab,求证ababab
a例2 如果用akg白糖制出bkg糖溶液,则其浓度为, b 若在上述溶液中再添mkg加白糖,此时溶液的浓度 am增加到,将这个事实抽象为数问学题,并给出证明. bm
解:可以把上述事实抽象如成下不等式问题:
ama,并ab且,则 已知a,b,m都是正数bmb
二、作商比较法
abba例3 已知a,b是正数,求证abab,
当且仅当ab时,等号成立.
abc 变式引申:求证:若a,b,cR,则aabbcc(abc)
3补充例题:已知a2,求证:loga(a1)log(a1)a 补充练习:若a,b,m,n都是正实数,且mn1,
试证明manbmanb
三、小结:两种方法的步骤。
三个数的基本不等式范文第2篇
斜桥中学肖剑
一、教材分析
不等式是高中的重点也是难点,而本节内容又是该章的重中之重,是《考试说明》中八个C级考点之一。基本不等式的证明方法(比较法、分析法、综合法)为我们证明不等关系提供了主要的方法及应用。用基本不等式求函数最值也是高考的一个热点。
二、教学目标
1.知识目标:⑴知道算术平均数和几何平均数的概念
⑵探索并了解基本不等式的证明过程,体会证明不等式的基本思想方法;
⑶能利用基本不等式证明简单的不等关系。
2.情感目标:通过不等式基本性质的探究过程,培养学生合作交流的思维品质,渗透不等式
中的数学美,激发学生学习兴趣,陶冶学生的数学情操。
3.能力目标:⑴通过对基本不等式证明的理解,体会三种证明方法,能准确用三种证明中简
单的方法证明其它不等式问题。
⑵体会类比的数学思想方法,培养其观察、分析问题的能力和总结概括的能力
三、教学重、难点
以学生探索发现定理来得出重点,以学生小组讨论,教师点拨来突破难点。
四、教学方法
以学生自主探究为住,教师归纳总结,采用启发式教学。
五、教学过程
1、创设情境、导入新课
利用多媒体显示下面不等式,由学生完成比较大小。
34294
423
32222
2、问题探究、讲授新课
提出问题:能否发现什么规律?
通过比较,学生不难得出,两数和的一半大于两数积的算术平方根。从而得出数学表达式abab。从而得出本节课的第一个重点:基本不等式的定理。 这样由学生自主探索、
2发现新知,可让他们体会获得成功的愉悦感。在这里,如果学生漏掉a和b是正数,可对他们进行修正,并可扩充到a0,b0。同时讲明取“=”当且仅当的含义,接着可向学生讲
解算术平均数和几何平均数的概念。
得出这个定理后,下面我可利用多媒体生动地向学生展示该不等式的几何证明即不等式的几何意义同时强调取等号时的位置,这样可提高他们学习数学的兴趣。展示完后,我便可提问,刚才我们是从图中直观地看出这个不等式是正确的,但我们数学是需要严谨的逻辑证明,同学们可用哪些方法去证明呢?这便是本节课的第二个重点,也是难点。在此,可鼓励学生发挥集体的力量,一人不行两人,两人不行四人,大家一起探讨,这样以学生为主体,使他们全都参与到课堂中去,使课堂达到高潮。在学生的讨论过程中,我也深入到学生中去,并做适当的点拨。
通过学生的讨论,学生不难得出用作差的方法证明该不等式,对此,我对他们进行鼓励、肯定,竖立他们学习数学的自信心。同时向他们讲明作差比较是我们高中阶段证明不等式的重要方法之一。最后我用多媒体展示书写过程,帮他们再次强化该方法的书写步骤。对于分析法,我估计学生可能会想到思路,会说出大致的证明过程,但对该方法的理解还是很模糊的,在这里,我首先向他们介绍这就是分析法,是我们证明不等式的另一个重要方法,接着讲解该方法,即从结论出发,推到已知结论或恒等式或公理,最后由我在黑板上完成书写,帮他们学会规范的书写,即“要证,只要证”的形式
要证abab
2只要证2abab
只要证0ab2ab
只要证0ab 2
因为最后一个不等式成立,所以ab ab成立,当且仅当ab,即ab时取"" 2
对于综合法,在证明这道题时,如果学生没有先想到,就把本方法在最后的方法中讲,因为综合法在本题中不易想到从哪个式子开始证明,但有了比较法和分析法后,学生自然能想到从哪个式子开始证明,同时讲清综合法的特点,即由条件,推倒结论。
讲完三种证明方法后,留一定时间给学生,让他们自己去感悟一下三种方法的特点及书写过程,加深他们的印象。
b2a2
最后,我以巩固本节课所学知识为目的,让学生比较:与ab的大小(其中ab
a,bR),在这里,我认为比较两个变量的大小,可引导学生利用我们上课一开始比较具体数大小的方法,代几个具体的数去比较。这种方法在我们以后做填空题中比较大小是一种捷径。而本题的证明可利用我们今天课上所讲的三种方法,我打算让两位学生在黑板板演,以检验他们掌握情况与书写格式是否合理。如时间还有剩余,可由学生完成例一,帮他们巩固基本不等式定理。
例一1.设a,b为正数,证明下列不等式成立:
ba12(2) a2 aba
162.已知函数yx,x(2,),求此函数的最小值。 x2(1)
六、回顾反思:
本节课的最后,由学生思考今天所学到了哪些知识,这些知识可解决哪些问题?
七、板书设计
基本不等式
一、定理
abab (a0,b0)
2二、证明方法
⑴作差法
⑵分析法
⑶综合法
三、探索 ab比较2a2b2的大小 2
如何证明
三个数的基本不等式范文第3篇
1教学目的:教学重点:综合法、分析法
教学难点:不等式性质的综合运用
一、复习引入:
1.重要不等式:
如果a,bR,那么a2b22ab(当且仅当ab时取""号)
2.定理:如果a,b是正数,那么
ab
222ab2ab(当且仅当ab时取""号). ab2:ab,ab()4. b
aa
b≥2(ab>0),当且仅当a=b时取“=”号;
5.比较法之一(作差法)步骤:作差变形判断与0的关系结论 比较法之二(作商法)步骤:作商变形判断与1的关系结论
二、讲解新课:
(一)1.综合法:利用某些已经证明过的不等式(例如算术平均数与几何平均数定理)2.用综合法证明不等式的逻辑关系是:AB1B2BnB
3.综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质
(二)证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的条件,把证明不等式转化为判定这些条件是否具备的问题,如果能够肯定这些条件都2.用分析法证明不等式的逻辑关系是:BB1B2BnA
3.分析法的思维特点是:4.分析法的书写格式:
要证明命题B为真,
只需要证明命题B1为真,从而有
这只需要证明命题B2为真,从而又有
这只需要证明命题A而已知A为真,故命题B
例1:已知a,b是正数,且ab,求证:a3b3a2bab
2转化尝试,就是不断寻找并简化欲证不等式成立的充分条件,到一个明显或易证其成立的充分条件为止. 其逻辑关系是:BB1B2BnA 证明:∵a0,b0,且ab
∴要证a3b3a2bab2,只要证(ab)(a2abb2)ab(ab), 只要证a2abb2ab,只要证a22abb20. ∵ab0,∴(ab)20即a22abb20得证.注:分析法的思维特点是:执果索因.对于思路不明显,感到无从下手的问题宜用分析法探究证明途径.另外,不等式的基本性质告诉我们可以对不等式做这样或那样的变形,分析时贵在变形,不通思变,变则通
联想尝试,就是由已知的不等式及题设条件出发产生联想,大胆尝试,巧用已知不等式及不等式性质做适当变形,推导出要求证明的不等式.其逻辑关系是:
AB1B2BnB
法二:证明:∵a0,b0,且ab ∴a3ab22a2b,b3ba22ab2,
∴a3ab2b3ba22a2b2ab2,∴a3b3a2bab2
aab
法三 aab
注:综合法的思维特点是:执因索果. 基本不等式以及一些已经得证的不等式往往与待证的不等式有着这样或那样的联系,作由此及彼的联想往往能启发我们证明的方向.尝试时贵在联想,浮想联翩,思潮如涌。
例2.(P23例1)已知a,b,c是不全相等的正数,求证
a(bc)b(ca)c(ab)6abc
证明:∵bc≥2bc,a>0,
∴a(bc)≥2abc① 同理 b(ca)≥2abc②
c(ab)≥2abc③
22
22
因为a,b,c不全相等,所以b2c2≥2bc, c2a2≥2ca, a2b2≥2ab三式不能全取“=”号,从而①、②、③三式也不能全取“=∴a(b2c2)b(c2a2)c(a2b2)6abc 法二:abbcca
3abc
333
3法三:ab2ac2bc2ba2ca2cb26法四:ab2ba2
2法五:a(b2c2)b(c2a2)c(a2b2)33a(b2c2)b(c2a2)c(a2b2) 例3(P23例2).已知a1,a2,anR,且a1a2an1,求证
(1a1)(1a2)(1an)2
n
改变:同样的条件,怎样证明: (2a1)(2a2)(2an)3
n
证明:a1R,1
1a
1
a1a1即
a12a1,同理1a22a21an2an
因为a1,a2,anR,由不等式的性质,得
(1a1)(1a2)(1an)2
n
a1a2an2
n
因为ai1时,1ai2ai取等号,所以原式在a1a2an1时取等号 变式:已知a1,a2,anR,且a1a2an1,求证
(2a1)(2a2)(2an)3
n
例
4、(P24例3)求证2证(略)
四、课堂练习: 1.设a, b, c R, 1求证:ab
736
2
2(ab)
2求证:ab
22
bc
ca
22
2(abc)
3若a + b = 1,求证:a
12
b
12
2
证:1∵
ab2
22
(
ab2
2222
)0∴
ab2
22
|
ab2
|
ab2
∴a2b2(ab)
2同理:b2c2
(bc), ca
22
22
(ca)
三式相加:a2b23由幂平均不等式:
bc
22
ca
22
2(abc)
12
(a
12
b
12
(a)
12
)(b2
12
)
(ab1)
22
1∴a
12
b
12
2
2.已知a,b,c,d∈R,求证:ac+bd(a2b2)(c2d2) 分析一:用分析法
证法一:(1)当ac+bd0时,(2)当ac+bd>0时,欲证原不等式成立, 只需证(ac+bd)2(a2+b2)(c2+d2) 即证a2c2+2abcd+b2d2a2c2+a2d2+b2c2+b2d2 即证2abcdb2c2+a2d2
即证0(bc-ad)2
因为a,b,c,d∈R,所以上式恒成立,
综合(1)、(2)可知:分析二:用综合法
证法二:(a2+b2)(c2+d2)=a2c2+a2d2+b2c2+b2d2=(a2c2+2abcd+b2d2)+(b2c2-2abcd+a2d2)
=(ac+bd)+(bc-ad)≥(ac+bd)
∴(ab)(cd)≥|ac+bd|≥ac+22
22222
五、课后作业
P25习题2。2
1、
2、
三个数的基本不等式范文第4篇
规定ab=(x1,x2,,xn)(y1,y2,,yn)=x1y1+x2y2++xnyn=xiyi.
(注:ab可记为(a,b),表示两向量的内积),有
由上,我们就可以利用向量模的和与和向量的模的不等式及数量积的不等式建立一系列n元不等式,进而构造n维向量来证明其他不等式.
一、利用向量模的和与和向量的模的不等式(即
例1设a,b,c∈R+,求证:(a+b+c)++.
证明:先证左边,设m=(a,b),n=(b,c),p=(c,a),
则由
综上,原不等式成立.
点评:利用向量模的和不小于和向量的模建立不等式证明左边,利用向量数量积建立不等式证明右边.
作单位向量j⊥AC
j(AC+CB)=jAB
jAC+jCB=jAB
jCB=jAB
|CB|cos(π/2-∠C)=|AB|cos(π/2-∠A)
即|CB|sinC=|AB|sinA
a/sinA=c/sinC
其余边同理
在三角形ABC平面上做一单位向量i,i⊥BC,因为BA+AC+CB=0恒成立,两边乘以i得i*BA+i*AC=0①根据向量内积定义,i*BA=c*cos(i,AB)=c*sinB,同理i*AC=bcos(i,AC)=b(-sinC)=-bsinC代入①得csinB-bsinC=0所以b/sinB=c/sinC类似地,做另外两边的单位垂直向量可证a/sinA=b/sinB,所以a/sinA=b/sinB=c/sinC
步骤1
记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c
∴a+b+c=0
则i(a+b+c)
=ia+ib+ic
=acos(180-(C-90))+b0+ccos(90-A)
=-asinC+csinA=0
接着得到正弦定理
其他
步骤2.
在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H
CH=asinB
CH=bsinA
∴asinB=bsinA
得到a/sinA=b/sinB
同理,在△ABC中,
b/sinB=c/sinC
步骤3.
证明a/sinA=b/sinB=c/sinC=2R:
任意三角形ABC,作ABC的外接圆O.
作直径BD交⊙O于D.连接DA.
因为直径所对的圆周角是直角,所以∠DAB=90度
因为同弧所对的圆周角相等,所以∠D等于∠C.
所以c/sinC=c/sinD=BD=2R
三个数的基本不等式范文第5篇
毕业论文(设计)
题 目:积分不等式的证明及应用
所 在 系: 数学与计算科学系
专 业: 数学与应用数学
学 号: 08090233 作者姓名: 盛军宇 指导教师: 肖娟
2012年 4 月 27 日
积分不等式的证明及应用
数学与计算科学系 数学与应用数学专业 学号:08090233 姓名:盛军宇 指导老师:肖娟
摘要
本文主要研究了如何利用积分中值定理、辅助函数、以及一些特殊积分不等式等方法证明积分不等式,并通过若干实例总结有关积分不等式的证明方法及规律,讨论了一些特殊积分不等式的应用. 关键词 积分不等式;中值定理;函数
0. 引言
积分不等式是微积分学中的一类重要不等式,在数学分析中有着广泛的应用,且在考研试卷中会经常出现.对积分不等式证明方法的介绍,不仅解决了一些积分不等式的证明,而且可以把初等数学的知识与高等数学的知识结合起来,拓宽我们的视野,提高我们的发散思维能力和创新能力.目前国内外对该课题的研究比较普遍,主要研究了如何利用微积分相关知识来解决一些比较复杂的积分不等式的证明.积分不等式的常用证法有: 定积分的定义、定积分的性质、泰勒公式、分部积分法、线性变换等.本文主要从以下几个方面讨论和归纳了一系列积分不等式的证明方法:利用积分中值定理来证积分不等式、利用Schwarz不等式来证积分不等式、利用微分中值定理来证积分不等式、利用积分中值定理来证积分不等式、利用二重积分来证积分不等式等. 1. 积分不等式的证明方法
1.1 利用积分第一中值定理证明积分不等式
积分第一中值定理(定理1) 若fx在a,b上连续, 则至少存在一点a,b,
使得fxdxfba. ab积分第一中值定理在证明积分不等式中有着举足轻重的作用. 例1 设fx在0,1上可微,而且对于任意x0,1,有|fx|M, 求证:对任意正整数n有
10fxdx1nn1ni1Mifnnn,其中M是一个与x无关的常数. 分析 由于目标式中一个式子为
i11if,另一个式子为fxdx0n,故把fxdx按
01区间可加性写成一些定积分的和,并应用积分第一中值定理加以证明. 证 由定积分的性质及积分中值定理,有
10fxdxnini1ni1fxdxni1fi1,,i1,2,,n. ,innni1i又因为fx在0,1上可微,所以由微分中值定理可知,存在ii,,使得, niiffifii,i1,2,,n.nni
因此10fxdx1nni11ifnnni1fi1nni1ifn
1n1n1n1nni1niffiniffinifiinM1nMn
i1n.
i1ni1在抽象函数fx的积分不等式中,若出现和号、幂函数、对数函数等,一般可以利用定积分的定义或区间可加性,将区间a,bn等分,点i也可采用特殊的取法. 1.2 利用拉格朗日中值定理证明积分不等式
拉格朗日中值定理(定理2) 若函数f满足如下条件:
if在a,b上连续;iif在a,b内可导, 则在a,b内至少存在一点,使得
ffbfaba. 利用拉格朗日中值定理的关键是根据题意选取适当的函数f(x)和区间a,b,使它们满足拉格朗日定理条件,然后运用拉格朗日公式或等价形式来运算得出所要的结论. 例2 设fx在a,b上连续.证明:若fafb0,则
fxdxabba24M,MMaxfx.
xa,b分析 由条件fafb0,及fx与fx,故想到利用拉格朗日中值定理. 证 由拉格朗日中值定理得: 对任意的xa,ab, 2fxfxfaf1xa,a1x. ,b, 对任意的x2abfxfxfbf2xb,x2b.
ababfxMxa,xa,,fxMbx,x,b22,
故
fxdxabab2afxdxbab2fxdx
ab2afxdxbab2fxdx
ab2aMxadxbab2Mbxdxba24M. 注意到M是fx在a,b上的最大值,所以解题的关键是如何使fx与fx联系起来,因而不难想到拉格朗日中值定理来证明. 1.3 构造变上限函数证明积分不等式
作辅助函数,将结论的积分上限或下限换成x,式中相同的字母也换成x,移项,使
得不等式的一端为零,则另一端为所作的辅助函数,这种方法在证明一些特定类型积分不等式时有重要作用.
1例3 设函数fx在0,1上连续,证明不等式fxdx0210f2xdx.
x分析 此例若令Fxftdt02x0f2tdt,则Fx的正负不易判断,需进一步的改进. 证 由待证的积分不等式构造变上限定积分的辅助函数,令
xxFxftdtxf0022tdt显然,F00,且Fx可导,有
f2Fx2fxxftdt02xx0tdtxf2t
fxftdt0,
0则Fx在x0时单调减小,即有FxF00,x0,
1特别地,F10,即证得不等式fxdx0210f2xdx. 例4 设函数fx在0,1上可微,且当x0,1时,0fx1,f00, 1试证 fxdx0210f3xdx.
2131证 问题在于证明fxdx00fxdx0, x令Fxftdt02x0fx3tdt,因为F00, Fx2fxftdt0f3xfx2x0ftdtf2x,
x0已知f00,0fx1,故当x0,1时,fx0, 记gx2ftdtf2x, 则g00,gx2fx2fxfx=2fx1fx0,x0,1, 于是gx2ftdtf2xg00,x0,1,故Fx0,x0,1, 0x4
1所以F1F00,即fxdx0210f3xdx. 通过上述两例,我们知道了构造变上限函数证明积分不等式,遇到特殊情况,不能按常规直接作辅助函数需要稍微变化一下,有时甚至要在一个题中构造两个辅助函数,以便判断所作函数的单调性. 1.4 利用二重积分证明积分不等式
在积分不等式的证明中利用定积分与积分变量形式无关的这一性质,将定积分的平方项或者定积分之间的乘积转化为积分变量形式不同的定积分之积,把定积分化为二重积分,可以达到有效的作用.
例5 若函数fx,px,gx在a,b上连续,px是正值函数,fx,gx是单调增加函数,则pxfxdxpxgxdxaabbpxdxpxfxgxdx.该不等式称为切贝谢
aabb夫不等式. 分析 只要证bapxdxpxfxgxdxabbbapxfxdxpxgxdx0
abb即可,而上述式子又可视为累次积分,从而化为二重积分. 证 因定积分的值与积分变量无关,故pxdxpydy,
aapxgxdxpygydy.
aabbbapydypxfxgxdxabbapxfxdxpygydy
abpypxfxgxpxpyfxgydxdyD
pxpyfxgxgydxdyD 1
其中,积分区域Daxb;ayb.因为定积分与积分变量的形式无关, 所以交换x与y的位置,得到
pypxfygygxdxdyD 2
将1式与2式相加,得12pxpyfxfygxgydxdy,由已知,
D可知px是正值函数,fx,gx是单调增加函数,从而fxfy与gxgy同号,
于是在D上pxpyfxfygxgy0,从而,0. 即pxfxdxpxgxdxaabbpxdxpxfxgxdx.
aa101bb例6 若函数fx在0,1上不恒为零且连续增加,则
ff3xdxxdx101xfxf3xdxxdx.
2200证 由于在0,1上,结论式中的分母均为正值,所以结论等价于
10f2xdx10xff23xdx10xf10f3xdx10xf2xdx0, 而 10fff2xdx210xf3xdx130xdx2xdx
Dxyf3ydxdyDfxxf3ydxdy
D2xf3yyxdxdy 3
其中,积分区域D0x1;0y1因定积分的值与积分变量的形式无关,故又有
Df2yf3xxydxdy 4
22将3式与4式相加,得1xyfyfxfxfydxdy, 2D由已知,函数fx在0,1上连续增加,从而对任意的x,y0,1,有
xyfyfxfxfy0,故22101ff3xdxxdx101xfxf3xdxxdx.
2200从以上的积分不等式证明中,可知把定积分化为重积分能巧妙地解决一些积分不等式的证明问题. 1.5 借助于判别式来证明积分不等式
引入适当的参数,构造合适的函数,讨论参数的判别式,以便证明所求证的积分不等式. 例7 设fx0,且在a,b上连续,试证fxdxabbdxfxaba.
2分析 可构造多项式,利用多项式的性质来证明积分不等式.
证 由题设对任意的,考察函数fx,因为fxfx0,有 fx2ba2bdxb2,即fx2dx02dxaafxfxfxdxab0, 不等式的左端可以看成的二次三项式,且对任意的上述不等式均成立, 故判别式2abdx4a2bdxfxbafxdx0,即fxdxabbdxfxaba.
2用判别式解题的关键是要有一个函数值恒定(大于或小于零、大于或等于零、小于或等于零)的一元二次方程gx,而g2x0,于是我们构造g2xdx0这样一个方程,
ab再结合这种情况下的判别式也是一个不等式,便可证明此题. 1.6 利用对称性证明积分不等式
命题1 当积分区域关于直线yx对称时,被积函数的两个变量交换位置后,二重积分的值不变. 这一条规律有助于解决一些特定类型的积分不等式的证明. 例8 函数fx在a,b上取正值且fx在a,b上连续试证:
fyhfxdxdyba,ha,b;a,b.
2证 因为ha,b;a,b关于直线yx对称,从而Ifxfyhfxdxdyfxdxdyhfy, 所以Ifyhdxdy12hfxfydxdyfxfy1dxdybah2. 由上例可知,在积分不等式的证明过程中,我们可以应用基本不等式,它可能起到重要作用. 1.7 利用积分第二中值定理的推论证明积分不等式
积分第二中值定理的推论:设函数f在a,b上可积.若g为单调函数,则存在a,b,使得fxgxdxgafxdxgbfxdx. aabb应用这个推论可以较容易地解决某些恒等式与某些不等式的证明.
babb例9 设函数fx在a,b上单调递增连续,则xfxdxfxdx.
a2a证 假设函数gxxab2,显然gx在a,b上可积,又函数fx在a,b上递增连续,根据积分第二中值定理的推论知存在a,b,使得
fxgxdxababfagxdxfbgxdx
ab且式又可变为fxgxdxfagxdxfbgxdx.由定积分的几何意义
ab知gxdxbgxdx,abaa,b,同时,fafb,于是,
bfxgxdxfbfagxdx即xab0, bababb,故fxdx0xfxdxfxdxa22a. 2. 一些特殊积分不等式的应用
2.1 Chebyshew不等式及其应用
Chebyshew不等式 设fx,gx同为单调递减或当调递增函数,则有
bafxdxgxdxbafxgxdx.
aabb若fx,gx中一个是增函数,另一个为减函数,则不等式变为
Chebyshewbafxdxgxdxbafxgxdx.
aabb不等式有广泛应用,特别在证明一类积分不等式中发挥重要作用. 例10 设gx是1,1上的下凸函数,fx为1,1上的偶函数且在0,1上递增,则, 1fxdx1gxdx112fxgxdx.
11分析 从所证的不等式看,它有点类似于Chebyshew不等式,如果能够构造出一个单调函数满足Chebyshew不等式的条件,问题就容易解决了,为此构造辅助函数,令xgxgx.
证 令xgxgx,显然x也为1,1上的偶函数,由于gx是1,1上的下凸函数,故当0x1x21,
gx1gx2x1x2gx1gx2x1x2, 即gx1gx2gx2gx1,即x1x2,所以fx,x在0,1上为增函数, 由Chebyshew不等式知, 110fxdxxdx011101fxxdx21211fxdxxdx111211fxxdx, 可得fxdxgxdx2fxgxdx. 1112.2 利用Schwarz不等式证明积分不等式
Schwarz不等式 若fx,gx在a,b上可积,则
Schwarzbafxgxdx2baf2xg2xdx. 不等式是一个形式简单,使用方便的积分不等式,在证明某些含有乘积及
b平方项的积分不等式时颇为有效. 例11 已知fx0,在a,b上连续,fxdx1, k为任意实数,求证:
a abfxcoskxdxabfxsinkxdx1 5
22证 5式左端第一项应用Schwarz不等式得
bafxcoskxdx2abfxfxcoskxdxb2
2 同理afxsinkxdxb2fxdxfxcosaabkxdxfxcosab2kxdx6
bafxsin2kxdx 7
67即得5式. 此题证明的关键在将fx写成2.3 Jensen不等式
fxfx的形式,以便应用Schwarz不等式.
定理3 设fx在a,b上连续,且mfxM,又t是m,M上的连续凸函数(指下凸函数),则有积分不等式
ba1ba1fxdxbafxdx 8
ab注 若t是m,M上的连续凹函数,则8式中的不等式号反向. 定理4 设fx,px在a,b上连续,且mfxM,px0axb,t是
m,M上的连续凸函数,则有bapxfxdxbapxdxpxfxdx 9
pxdxabab注 当t是m,M上的连续凹函数时,9式中的不等号反向. 例12 设fx在a,b上连续,且fx0,则对任意的自然数n,有
1nlnbaba1fxdxba1t2banlnfxdx. 证 令tnlnt,那么tn,tnt10,故t为凹函数, 显然fx在t的定义域内有意义,故由定理3知,结论成立. 例13 设fx,px是a,b上的正值连续函数,则对任意的自然数n,有
banpxlnfxdxpxdxabnlnbapxfxdxbapxdx. 证 令tnlnt由上例知t为凹函数,故由定理4知结论成立. 2.4 Young不等式的应用
Young不等式 设fx是单调递增的,连续于0,a上,f00,a,b0,f1x表示fx的反函数,则abYounga0fxdxb0f1ydy,其中等号成立当且仅当fab. 不等式是一个非常重要的不等式,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解.
例14 证明:a,b1时,不等式abea1blnb成立. 证 设fxex1,则fx单调并连续,f等式有,
a1b11yln1y,因为a,b1,由Young不a1b10故abea1blnb. 2.5 Steffensen不等式
Steffensenfxdx0f1ydyea1blnbab1, 不等式 设在区间a,b上,g1x ,g2x连续,fx一阶可导,任给
xaxa,b,成立不等式g1tdtxag2tdt,且g1xdxabbag2xdx.若fx在a,b上单调递减,则fxg1xdxabfxgxdx;若fx在上单调递增上述不等式变号.
a2b例15 证明20sinx1x2dx20cosx1x2dx. 证 对任意的x0,22,因为cosx1sinx,所以有sintdt0xx0costdt;此外,显然有2sinxdx00cosxdx1且函数
在0,上单调递减,从而根据Steffensen不21x21等式,知20sinx1x2dx20cosx1x2dx. 结论
总之,以上讨论的积分不等式的主要证明方法都离不开积分的性质,主要是通过函数的可微性和函数的可积性,利用二重积分、拉格朗日中值定理和积分中值定理来证积分不等式;以及巧妙的利用Schwarz不等式和Jensen不等式等,在实际应用中需要结合各方面灵活使用题中条件或不等式,才会使问题得以正确解决. 参考文献
[1]华东师范大学数学系.数学分析[M].北京:高等教育出版社,2001:223. [2]宋海涛.几个定积分不等式的证明[J].高等数学研究,2003,6(4):34-35. [3]陈兴荣,杜家安.关于积分不等式的证明[J].工科数学,1993,9(2):77. [4]孙清华,孙昊.数学分析内容、方法与技巧(上)[M].武汉:华中科技大学出版社,2003.
[5]张瑞.定积分不等式证明方法的研究[J].内江科技,2001,(5):102. [6]丰刚.几个积分不等式及其应用[J].牡丹江大学报,2010,19(7):88-89. [7]刘玉记.再谈Young’s不等式的证明[J].齐齐哈尔师范高等专科学校学报,2009,(4):108. [8]舒阳春.高等数学中的若干问题解析[M].北京:科学出版社,2005:108-109. [9]杨和稳.积分不等式证明技巧解析[J].高等数学研究,2009,12(6):38. [10]裴礼文.数学分析中的典型问题与方法[M].北京:高等教育出版社,1993. The proof and application of integral inequality Department of Mathematics and Computational Science
Mathematics and Application Mathematics specialty Number:08090233
Name:ShengJunyu
Instructor:XiaoJuan
Abstract: This paper studied to use the integral mean value theorem、the auxiliary function、 some special integral inequality and other methods to prove integral inequality, and summarized some examples about proof methods and rules of integral inequality, and discussed the application of some special integral inequality.







