多波束卫星通信系统(精选7篇)
多波束卫星通信系统 第1篇
2011年的中国卫星应用大会明确提出,卫星移动通信是产业内即将到来的重大机遇[1]。然而我国目前国内批准运营的全球星(Globalstar)、亚洲蜂窝系统(ACeS)和海事卫星(Inmarsat)三个卫星移动通信系统均为国外系统[2],通信安全和通信保障存在很大隐患,尽快发展我国自主研制的卫星移动通信系统具有重要意义。
我国属于自然灾害多发地区,2008年5月,汶川地震给我国造成了巨大的人员和财产损失。事实证明,抢险救灾应急处置急需发展卫星移动通信系统。现有的卫星移动通信系统中,Globalstar是低轨道星座系统,通信时要求终端所在的卫星覆盖区域内必须有关口站才能完成[3],关口站失效时,无法完成通信。Inmarsat虽然在汶川地震中发挥了一定的作用,但移动用户之间建立通信链路时,需要网控中心向主叫方与岸站间分配SCPC信道,向岸站与被叫方分配另外的SCPC信道,高业务量时呼叫阻塞率误码率都较高[4],难以满足突发业务的需要,所以本文的研究主要针对突发场景中突发业务量情况下的资源管理方法。
1 系统及场景模型
1.1 系统模型
以美国2009年发射的拥有200个以上的波束覆盖整个美国大陆及周边沿海地区Terrestar1卫星移动通信系统[5]为参考,建立一个覆盖我国领土的地球同步轨道多波束卫星移动通信系统模型,由空间段,地面段和用户段组成,如图1所示。
1.1.1 空间段模型
空间段为1颗多波束地球同步轨道卫星,卫星波束假定为100个,所有波束覆盖整个中国领土及周边海域。卫星定点于对地静止轨道上,星上载荷包括100个点波束,馈电链路和频率分路/合路器。
1.1.2 地面段模型
地面段由若干个信关站和1个网控中心组成。信关站向网控中心申请资源,受网控中心的管理控制。
1.1.3 用户段模型
用户段包括日常状态终端和地震应急终端两类。所有终端划分5级用户优先级,1级为最高级别,5级为最低级别,高级别可以抢占低级别用户信道;划分3级业务优先级,优先级由高到低分别为:话音、视频、数据,参照欧洲GMR1标准[6],三种业务信道按速率分为TCH3、TCH6、TCH9三种,分别占用3、6、9个连续时隙。
1.2 场景模型
根据终端不同的分布方式,假定两种场景模型。
1.2.1 均匀分布模型
将20 000个日常状态终端均匀分布于100个波束区域内,每个波束区域内有200个终端,每个终端话务量相同。考虑地震情况下,区域业务量加重,将2 000个地震应急终端在成都、重庆一带的两个相邻波束区域内叠加分布。
1.2.2 人口密度分布模型
本文提出一种按卫星波束覆盖区域内人口数量占总人口的比例分布终端的场景模型,即人口密度分布模型。
首先根据2000年中国分县人口密度图[7]和多波束天线覆盖区域,按波束内平均人口数量密度乘以波束面积得出基本人口数量,如图2所示。然后根据2000年第五次人口普查数据,将波束内的重点城市人口数量与基本人口数量相加,得出波束内总人口数量,最后将20 000个日常状态终端按各波束区域内的人口数量占总数量的百分比进行分布。将2000个地震应急终端在成都、重庆一带的两个相邻波束区域内叠加分布。
2 资源管理算法
资源管理过程由信关站和网控中心配合完成,可分配的资源有载波、时隙和功率。资源管理模式分为预分配、分布式动态分配和集中式管理三种。
2.1 约束条件
(1)终端的呼叫间隔和呼叫持续时间服从独立的负指数分布;
(2)每个波束分配的功率,及多个相邻波束分配的功率之和,受到一定的限制;
(3)不同的波束内允许分配的载波数量有不同的限制。
2.2 资源管理模式
2.2.1 预分配
所有资源预先均匀分配给100个波束,每个波束内的资源只能分配给此波束内的终端使用。
2.2.2 分布式动态分配
所有资源一部分预先均匀分配给100个波束,使用条件与预分配相同,其余保存在网管中心,当波束内资源不够时,由各信关站向网管中心申请,申请成功的资源可分配给任一符合条件的终端,使用结束后由信关站释放回网管中心。
2.2.3 集中式管理
所有资源保存在网控中心,终端发起呼叫时由各信关站向网控中心申请,申请成功的资源可分配给任一符合条件的终端,使用结束后由信关站释放回网控中心。信关站申请资源算法流程见图3。
3 仿真性能度量及结果
3.1 仿真指标和计算方法
仿真输出指标为呼叫阻塞率、掉线率、频率利用率和功率利用率。
3.1.1 呼叫阻塞率
所有终端产生的呼叫累加得到总呼叫次数CallNumtotal。
信关站成功接纳的呼叫次数,包括由于优先级低而被中断的呼叫,累加得到成功呼叫次数CallNumsuccess。
呼通率
呼叫阻塞率=1-呼通率。
3.1.2 掉线率
掉线是由于优先级低而被中断的呼叫,每发生一次掉线则累计掉线次数DropNum。
掉线率
3.1.3 频率利用率
频率利用率是一个随机过程,本文的计算方法为,每过1个时隙(2.5 ms)计算当前使用频率占总频率资源的百分比,并对时间求平均求出频率利用率的期望值。
取整个仿真过程中第一次成功呼叫的时刻为0时刻。
3.1.4 功率利用率
功率利用率计算方法与频率利用率类似。
取整个仿真过程中第一次成功呼叫的时刻为0时刻。
3.2 仿真结果与分析
3.2.1 关于是否支持优先级的对比分析
为了分析是否支持用户和业务优先级对系统性能的影响,选用集中式管理方式,在两种分布模型下进行对比,仿真时间:24 h,终端爱尔兰参数设置为0.15。
从图4和图5呼叫阻塞率的对比可以看出:
(1)如果不支持优先级,则所有用户具有基本相同的呼叫阻塞率;
(2)如果支持优先级,则高等级用户的呼叫阻塞率低于低等级用户的呼叫阻塞率,重点用户的通信得到有效保障;
(3)支持优先级的模式下,话音业务优先级高于数据业务优先级,因此呼叫阻塞率较低,实时业务可以得到更好地保障。
从图6和图7频率和功率利用率的对比可以看出:
(1)无论是否支持优先级,系统的资源利用率基本没有区别;
(2)是否支持优先级不影响系统对各种业务的支持能力,但是可以将资源更多地向高等级重点用户倾斜。
3.2.2 关于资源管理模式的对比分析
为了分析不同资源管理模式下的系统性能,系统选用支持用户和业务优先级的模式,在不同的终端分布模型下进行对比,仿真时间:24 h,终端爱尔兰参数设置为0.15。
从图8图11的呼叫阻塞率和掉线率仿真结果对比可以看出,无论在何种终端分布模型下,采用集中式管理资源模式,呼叫阻塞率和掉线率显著低于其它资源管理模式。
从图8和图10均匀分布场景的仿真结果对比可以看出,均匀分布场景下,预分配的呼叫阻塞率和掉线率略优于分布式动态分配,这是由于预分配较好地匹配了均匀业务的分布。而从图9和图11人口密度分布场景的仿真结果对比可以看出,人口密度分布场景下,分布式动态分配的呼叫阻塞率和掉线率都优于预分配,这是由于分布式动态分配更好地适应了业务的非均匀分布特征。
从图12和图13的频率和功率利用率仿真结果对比可以看出:
(1)无论在何种终端分布模型下,采用集中式管理资源模式,频率利用率和功率利用率都显著高于其它资源管理模式。
(2)均匀分布场景下,预分配的资源利用率略优于分布式动态分配,这是由于预分配较好地匹配了均匀业务的分布;而人口密度分布场景下,分布式动态分配的资源利用率优于预分配,这是由于分布式动态分配更好地适应了业务的非均匀分布特征。
4 结论
本文通过对有无用户和业务优先级、不同终端分布场景和不同的资源管理模式的仿真结果分析比较,得出支持用户和业务优先级可以对高优先级的重点用户及实时业务提供更好的服务保障;集中式管理资源模式显著优于其它两种管理模式,可使卫星资源得到更充分的利用;仿真场景设计应选用人口密度分布模型,以此分布模型得出的仿真结果更加符合实际系统应用。
摘要:为了提高多波束卫星移动通信系统的资源使用效率、发挥其保障重点、兼顾全局的优势,以星上资源的管理方法为研究对象,以地震为假想场景,首先建立了地球同步轨道多波束卫星移动通信系统的资源管理仿真模型。在考虑了用户和业务优先级设置的前提下,对预分配、分布式动态分配、集中式管理三种资源管理模式分别进行了对比分析与仿真。仿真分析结果表明,采用设置用户和业务优先级可以对高优先级的重点用户提供更好的服务保障,集中式管理资源模式可以使卫星资源得到更充分的利用。
关键词:多波束卫星,优先级,集中式管理
参考文献
[1]黄序.探讨卫星产业的下一个机遇——卫星移动通信.卫星电视与宽带多媒体,2011;11:33—35
[2]吴建军,程宇新,罗常青,等.我国GEO移动通信系统的地面段建设模式思考和建议.第五届卫星通信新业务新技术学术年会论文集,2009;03:52—59
[3]李有鑫,郑光伟.GlobalStar低轨道移动卫星通信系统.南京邮电学院学报,1995;15(4):130—135
[4]张彩娟,周红彬,李斌成.Inmarsat—m系统数据信道性能分析.无线电工程,2006;36(4):32—34
[5]张威,尹冉冉,沈俊.TerreStar卫星移动通信系统.数字通信世界,2012;01:32—34
[6]程宇新,罗常青,吴建军.新一代GEO卫星移动通信新标准GMR—13G简介.第六届卫星通信新业务新技术学术年会论文集,2010;03:369—374
[7]葛美玲,封志明.中国人口分布的密度分级与重心曲线特征分析.地理学报,2009;64(2):202—210
[8]Mischa Schwartz.移动无线通信.许希斌,李云洲译.北京:电子工业出版社.2006:45—77
[9]侯旭光,晏坚,赵建国.卫星移动通信系统关键技术分析与展望.数字通信世界,2011;07:52—54
多波束卫星通信系统 第2篇
文章利用多波束测深系统获得的高效高精度的`数据,结合相应的客观环境资料,来分析评估实际工程受到泥沙回淤影响的程度,有利于疏浚企业从战略上对工程施工进行管理、控制.
作 者:杨景鹏 作者单位:中交广航局南沙工程项目部,广东广州,511469 刊 名:现代企业文化 英文刊名:MODERN ENTERPRISE CULTURE 年,卷(期):2010 “”(21) 分类号:U6 关键词:多波束测深系统 疏浚工程 数据采集 回淤分析★ 数据分析总结
★ 数据分析怎么写
★ 调查报告数据分析
★ 数据分析年终工作总结
★ 简单的数据分析数学教案
★ 旅游数据分析报告网
★ 数据分析报告范文6篇
★ 数据分析报告的
★ 网站数据分析经验总结
多波束卫星通信系统 第3篇
关键词:海洋测量;多波束测深系统;数据处理;现状分析;发展趋势
一、多波束测深系统理论概述分析
多波束测深是水声技术、计算机技术、导航定位技术和数字化传感器技术等多种技术的高度集成。测深时,载有多波束测深系统的船,每发射一个声脉冲,不仅可以获得船下方的垂直深度,而且可以同时获得与船的航迹相垂直的面内的几十个水深值。多波束测深系统一般由窄波束回声测深设备(换能器、测量船摇摆的传感装置、收发机等)和回声处理设备(计算机、数字磁带机、数字打印机、横向深度剖面显示器、实时等深线数字绘图仪、系统控制键盘等)两大部分组成。
二、多波束测深的工作原来和技术概况
1.多波束测深工作原理
多波束测深声纳是一种大型组合设备,除其系统本身外,还包括定位、罗经、船姿传感器、声速剖面仪、数据采集工作站和绘图仪等配套设备。多波束系统和传统的单波束回声测深仪从原理上讲没有本质的区别,只是多波束系统的换能器是由多个换能器单元组成的阵列,工作时能同时发射多个波束和接收多个波束,对海底进行条带式测量。
2.多波束测深技术概况
多波束条带测深系统是一种高效的海底地形测绘设备,它是在单波束回声测深仪的基础上发展起来的。多波束测深系统是利用安装于船的龙骨方向上的一条长发射阵,向海底发射一个与船龙骨方向垂直的超宽声波束,并利用安装于船底的与发射阵垂直的接收阵,经过适当处理形成与发射波束垂直的许多个预成接收波束,从而当测深系统在完成一个完整的发射接收过程后,形成一条由一系列窄波束测点组成的,在船只正下方垂直航向排列的测深剖面。
由于各波束空间上呈扇形排列,波束指向角自中央波束向边缘波束逐渐增大,因此回波信号自中央波束开始主要为反射波,向两侧逐渐过渡到散射波。如上所述,振幅检测法在单波束测深仪中是一种成功的海底信号探测方法,其原因是单波束测深仪的回波信号主要是反射波。在多波束测深系统中,当波束指向角不断增大时,回波的反射波振幅将迅速减小,反射波的尖脉冲形态也将随之趋于模糊。当波束指向角还不十分大时,减小了的反射波振幅还可以用变振幅强度处理方法来检测,但当波束指向角足够大时,微弱的反射波信号在背景噪声中将变得无法检测。因此在多波束系统的回波信号检测方法中除了使用振幅检测法外,一般还使用相位检测法。相位检测法利用相干原理,通过比较换能器两个给定接收单元之间的相位差的方法来检测波束的到达角。
二、多波束测深系统发展阶段
1.SEABEAM 1000系列为代表的第一代产品,它的波束数少、扫幅宽度仅6O度,集成度低,水深数据不能实时处理。
2.SEABEAM 2000 系列、ATLASHYDROSWEEP和SIMRAD EM12为代表的第二代产品,采用了P30大规模集成电路和DSP技术,波束数达到121个,波束角宽2。,数据实时和后处理软件成熟。
3.SIMRADEM 120和RESON SeaBm 8150深水多波束测深系统为代表的第三代产品,采用了超大规模集成电路和速度更快的DSP板,波束数达到191个或更多,波束角宽0.5—1度,实现全姿态稳定,数据实时和后处理软件更加成熟。
4.近年刚出现的SIMRAD EM122深水多波束测深系统和EM710被称为第四代产品,采用宽带技术、近场自动聚焦和水体显示等技术,提高了声呐性能,波束数更多,测深点更密,集成度也更高。相比较EM120系统EM122系统标称指标覆盖宽度最大37 km,单次发射形成两行共576个波束,可加密至864个测深点,波束角宽最小可达0.5×1度,该系统目前正在推广阶段。
四、多波束测深系统数据处理的发展趋势
1.声速及声线跟踪
现有的声速经验模型比较多,这为深度的计算精度提高提供了宝贵的理论依据。但由于这些模型均为特定情况下的声速计算模型,计算所得声速彼此之间也存在着一定的差异,对波束脚印的归位计算带来了一定的困难。考虑多波束系统的应用范围广,涉及海域的水文因素变化复杂等特点,为此寻求一种适合多波束的最优声速经验模型已成为首要课题。
2.多波束辅助参数的测定和滤波
多波束是一个由多传感器组成的复杂系统,最终测量成果质量不但取决于系统自身的测量数据质量,还取决于辅助传感器测量参数的精度,因此,开展诸如导航定位技术、声速改正技术、潮汐改正技术以及换能器吃水改正技术等与多波束测深相关的专项技术研究,也是多波束数据处理未来面临的主要任务。
3.深度数据滤波
测量过程中白噪声和海况的影响以及参数设置的不合理等,都将会导致测量数据中出现假信号,形成虚假地形,从而使绘制的海底地形图与实际地形存在差异。为了提高测量成果的可靠性,必须消除这些假信号,因此需不失时机地展开测深异常数据的定位研究,对数据进行必要的编辑,剔除假信号,为后处理成图做好准备。深度测量误差不仅包含粗差和随机误差,还包含了系统误差,某些情况下,系统误差的影响还相当显著。
4.图像处理
反向散射强度是多波束系统中又一类重要测量参数,由于数据量庞大,国内许多用户很少采集这方面的数据,对其图像的研究也少有文献。其实,多波束声纳图像与遥感图像、雷达图像等除形成机理存在差异外,图像的处理思想基本相同。多波束图像由于形成机理、环境噪声等与其它图像还存在着很大的差异,因此,在现有的图像处理方法中研究适合多波束声纳图像处理的最优方法是图像数据处理研究中的一个重要问题。
5.多波束数字信息与侧扫声纳图像信息的融合
同多波束系统一样,侧扫声纳也可对海底进行全覆盖式测量。两类设备的应用,对实现海底地形地貌的认识起着十分重要的作用。多波束系统既可获得高密度、高精度的测点位置信息,又可获得海底图像信息,但由于分辨率的限制,一般情况下,成像质量较差;而侧扫声纳则以成像为主,可获得高分辨率的海底影像,但仅能给出描述海底地貌、地物的概略位置。多波束能够给出海底地物的位置、大小等定量分析数据,但在对海底的定性分析方面还存在不足;而侧扫声纳则可根据图像的明暗程度反演海底地质组成,并在此基础上,进行地质分类和定性分析,但却难以利用概略的位置信息进行精确的量化分析。
总结:多波束测深声纳系统通过在指定空间预成多个波束,当目标回波信号入射到线列阵时,通过多个波束响应向量对基阵接收信号进行相位或时延加权补偿,即可确定出信号的入射方向,并里用能量中心收敛法对回波信号进行处理、计算,继而判断出目标的方位。从以上工作原理部分的介绍可以看出, 多波束条带测深技术是一种综合水声、卫星通讯、仪器仪表、计算机等多学科的复杂系统。通过对多波束测深现状和数据处理等方面的分析,希望对我国未来海洋多波束测深做出贡献。
参考文献
[1]黄谟涛.多波束测深技术研究进展与展望[J].海洋测绘,2000,78(3):2—7.
[2]赵会滨,徐新盛,吴英姿.多波束条带测深技术发展动态展望[J].哈尔滨工程大学学报,2001, 22(2)
[3]彭虎.超声成像算法导论[M].合肥:中国科学技术大学出版社.2008.
多波束卫星通信系统 第4篇
目前,对于地面蜂窝系统同频干扰的探讨已经相对成熟,但是针对多波束卫星移动通信系统同频干扰的研究还很匮乏。虽然多波束卫星移动通信系统与地面蜂窝系统有很多相似之处,但是卫星系统的干扰情况与接收终端和波束中心到卫星天线方向夹角有关,而地面蜂窝系统只考虑了复用距离[1],显然照搬地面蜂窝系统同频干扰算法是不可行的。
同频干扰是由于系统采用同频复用引起的,所谓同频复用就是指在相隔一定物理距离的2 个波束内使用相同的频率,这样做大大提高了频谱的使用率,极大地扩充了通信网的容量,但同时也带来了相应的问题,相隔一定物理距离的波束内频率相同的载波相互干扰,给用户造成了很大的困扰[2]。
本文结合多波束卫星移动通信系统的特点,提出适用于该系统的同频干扰算法,提高了干扰计算的准确度和可信度。
1 干扰分析模型
在考虑同频干扰时,终端接收信号的下行载干比( C /I) 是一个重要的指标[3]。下面通过建立干扰分析模型来计算终端接收信号的下行载干比。
构建干扰分析模型的主要功能是确定每个波束内的载波后,计算波束内每条载波的同频干扰值,并据此判断该波束内载波配置是否满足载干比要求。
多波束卫星移动通信系统同频干扰分析方法与地面蜂窝系统同频干扰分析方法有些不同,主要体现在2 个方面: ① 多波束卫星移动通信系统中同频干扰的大小不与距离的幂次方成正比,而与接收终端和波束中心到卫星天线方向夹角密切相关; ② 蜂窝系统每个小区有一个相同发射功率的基站作为中继[4,5,6,7],多波束卫星通信系统中使用卫星作为中继,所以蜂窝系统中信号的传播路径是从小区中心基站到移动台[8],而在多波束卫星移动通信系统中,信号的传播路径是由卫星发射天线到终端,并不是从波束中心到终端。
下面将通过3 步来建立多波束卫星移动通信系统同频干扰分析模型: 第①步,求解任意两点卫星天线方向夹角; 第②步,建立任意波束的卫星天线方向图; 第③步,求解同频干扰功率和载波功率。
1. 1 卫星天线方向夹角
由于在计算波束间的同频干扰时,同频干扰值的大小与路径传播衰减密切相关,而在多波束卫星移动通信系统中,路径传播损耗的大小不与传播距离的幂次方成正比,而是与接收终端和波束中心到卫星天线方向夹角有关系,所以首先要确定接收终端和波束中心之间的卫星天线方向夹角。
首先要已知接收终端、波束中心的经纬度和卫星的位置,然后建立以下模型分析接收终端和波束中心天线方向夹角。
如图1 所示,假设卫星的位置为 λ1E,由于研究的是GEO卫星,卫星星下点A的经纬度即为( λ1E,0) ,假设波束中心B接收终端C的经纬度分别为( λ2E,φ2N) 和( λ3E,φ3N) ,星下点A与波束中心B的地心夹角为 θ1,星下点A与接收终端C的地心夹角为 θ2,波束中心和接收终端B、C的地心夹角为 θ3,波束中心和接收终端的卫星天线方向夹角为 α,地球的半径为R( km) ,卫星的高度为H( km) 。
利用A、B两点经纬度可以得到A、B两点的地心夹角 θ1,
同样,利用A、C两点经纬度可以得到A、C两点的地心夹角 θ2,
利用B、C两点经纬度可以得到B、C两点的地心夹角 θ3,
在三角形BOD中,已知BO长为R,DO长为H+ R,得出BD长度,
在三角形COD中,已知CO长为R,DO长为H+ R,得出CD长度,
在三角形BOC中,已知BO长为R,CO长为R,得出BC直线长度,
在已知三边长度之后,在三角形BCD中,可以得到BD与CD的夹角 α,
因此,波束中心B与接收终端C的的卫星天线方向夹角为 α。
1. 2 卫星天线方向图
卫星天线方向图是得到载波功率衰减的重要工具,下面简单利用天线原理的知识来阐述任意波束对应的抛物面卫星天线方向图的求解过程。
计算抛物面辐射场有2 种方法———面电流法和口径场法,本文采用的是口径场法。抛物面口径,是由抛物面边缘限定的垂直于轴线的圆平面,在求抛物面口径场强分布时,要应用2 条定量: 一是几何光学反射定律,另一是能量守恒定律。
用口径场法计算的远区辐射场:
式中,μ0、ε0分别为介质的磁导率和介电常数,^θ0、^φo分别为单位矢量,I为振子电路,Pt为馈源总辐射功率。
计算抛物面辐射场时,主要关系方向图主瓣和近副瓣,通常 θ 角不大,cosθ ≈ 1[9],而且仅计入口径场主极化分量,于是,抛物面天线辐射场:
式中,Gf( ξ,φ') 为馈源方向函数,当馈源方向图给定时,将式中的变量( ξ,r') 变换成( ρ,φ') 。根据抛物面的几何特性,从图2 可得:
然后利用插值法,得到辐射场:
式中,Ghf( ρ) 和Gef( ρ) 为抛物面口径场H平面和E平面功率分布函数,可由馈源的H平面和E平面功率方向函数得出。
当馈源为圆形波导辐射器馈源时,焦径比为0. 333的抛物面天线,从上式计算得出卫星天线方向图,归一化后如图3 所示。
由图3 可知,卫星天线方向夹角与天线增益并不是简单对应的角度越大( 相距越远) 增益越小,在主瓣和旁瓣变换或旁瓣间变换的时候增益在一定角度内反而会增大,这是与地面蜂窝系统最大的差异。
在得到一个波束的卫星天线方向图之后,可以认为卫星通信系统中所有波束的卫星天线方向图都相同[10]。
1. 3 干扰功率
在得到接收终端和波束中心卫星天线方向夹角与卫星天线方向图之后,接下来计算同频干扰功率,确定了终端类型和业务类型,用以下方式计算同频干扰的功率,多波束卫星同频干扰示意图如图4所示。
1.3.1计算载波下行EIRPdc
载波下行EIRPdc为:
式中,EIRPs为卫星饱和EIRP,BOoc为每载波输出补偿,
式中,BOic为每载波输入补偿,BOo为转发器输出补偿,BOi为转发器输入补偿,
式中,V为系统容量。
因此,载波下行EIRPdc可表示为:
1. 3. 2 计算同频干扰功率
卫星发射信号落入本波束的载波功率为:
式中,LFD为下行自由空间传播损耗,La为大气吸收损耗。
根据卫星波束复用关系、卫星天线方向图和卫星天线方向夹角计算复用波束落入本波束的干扰功率Ii( i = 1,2,…,M - 1,M为波束复用的次数) 。假设接收终端与复用波束中心之间的卫星天线方向夹角为 αi( i = 1,2,…,M - 1) ,αi对应的归一化后的卫星天线方向图中的衰减量为 ωαi,那么复用波束i对应的同频干扰值为:
注: 假如第i个复用波束中没有使用该频点的终端在工作,那么Ii= 0 。
那么总的同频干扰功率为:
至此,对某频点的载干比就可以用下式表示:
2 评判标准
在计算得到波束中频点的载干比( C /I) 之后,则需要一个评判标准来确定该载干比是否能够满足通信要求。载干比的计算是为了评判载波规划的结果是否能够满足卫星移动通信要求,如果载干比过低,即有用信号太小,干扰信号太大的情况下,则需要重新考虑载波规划。
首先,对于数字地面蜂窝系统的评判标准,我国的GSM系统、美国的IS-54 系统和日本的PDC系统为了保证绝大多数地区和绝大部分时间的通信质量,都要求载干比不得< 9 d B,即C /I ≥9 d B[11,12,13]。
考虑到卫星移动通信系统复杂的链路情况以及更高的通信要求,一般认为卫星移动通信系统中载干比不得小于13 d B,即C /I ≥ 13 d B[14,15]。
3 仿真验证
仿真试验中载波分配完成后,得到波束1 的前20 个频点的载干比的情况如图5 所示。
从图5 中可以看到,有些频点的C /I满足通信要求> 13 d B,而某些频点的C /I不能满足> 13 d B的要求,这就需要对规划结果进行调整,以使得该频点的载干比能满足通信要求,例如8 号频点载干比明显< 13 d B,则需要对8 号频点进行调整。
4 结束语
同频干扰是频率复用系统中不可忽视的一个问题,合理规划载波分配方案是解决同频干扰问题的重要手段,而同频干扰分析模型是评判载波规划方案优劣的重要依据。在分析了多波束卫星移动通信系统与地面蜂窝系统的区别之后,建立了适合于本系统的同频干扰分析模型,并在系统的载波规划方案确定后对每个频点的载干比进行了仿真,证明了干扰分析模型的正确性和有效性,这就为下一次的载波规划提供了指导和借鉴。
摘要:针对多波束卫星移动通信系统的特点,分析了多波束卫星移动通信系统与地面蜂窝系统同频干扰计算方法的差异性,考虑了接收终端和波束中心卫星天线方向夹角带来的增益量的衰减,提出了适用于该系统的同频干扰算法,建立了适合于本系统的同频干扰分析模型。计算得到的载干比可以作为资源规划的反馈参考,为资源规划做出指导,满足更高的通信质量要求。
多波束测深系统应用方向探讨 第5篇
1 多波束系统
多波束测深是水声技术、计算机技术、导航定位技术和数字化传感器技术等多种技术的高度集成, 由多个子系统构成, 虽然不同的多波束系统的组成单元不尽一致, 但大体上可以将其分为声学系统、数据采集系统、数据处理系统和外围辅助传感器几个部分。多波束采集系统完成波束的触发, 经换能器发射和接收后将其转换为数字信号, 反算出其测量距离或记录往返时间, 通过定位设备、姿态仪、声速剖面仪和电罗经等实现船舶瞬时位置、姿态、航向的测定以及海水中声速的传播特性, 最终由数据处理系统综合声速、定位、姿态、声速剖面和潮位等信息, 计算波束脚印的深度及坐标, 绘制海底地形图。
2 多波束与单波束的比较
多波束具有高分辨率、高清晰度、全覆盖的特点, 能够全面客观的反映测区的海底地形, 其有效扫宽可达水深的4~6倍, 同时水深点间隔小, 相比单波束更加快捷、直观。在通常情况下, 由于多波束测深系统在测量的同时进行姿态补偿, 可以减少天气、海况等因素对船体摇晃所造成的误差影响, 因此其自符性要更胜一筹, 尤其是在水下地形起伏较大的区域表现的更加明显;此外, 当波束换能器的波束角大于单波束波束角, 投影在海底的波束脚印较大, 却只获得一个简单的深度值, 会进一步加大测量误差。
然而, 对于浅水区, 声速变化不规律, 且容易对多波束探头造成损坏, 多使用单波束与多波束配合使用。
3 影响多波束测深精度的因素
多波束影响精度的因素很多, 但在具体工程应用中, 更关心的是如何避免可控范围内的影响以及对如何已经产生的影响进行补救。在此, 笔者根据造成的影响是否能够补救将影响多波束测深精度误差分为两类:固定误差和可变误差。固定误差的影响可以在后期处理过程中进行补救, 如换能器、GPS、运动传感器的位置偏差, 换能器吃水改正、潮位改正, 以及固定传感器的时延偏移和多波束的矫正参数, 包括LAT, ROLL, PITCH等。可变误差的影响会造成不可逆转的后果, 包括时间同步不正确、声呐头安装杆与运动传感器自身震动、船体自身枕头导致声呐头与传感器的震动、运动传感器数据漂移、DGPS间歇性改正等可变定位误差以及声速剖面不正确等等。
在进行外业测量时, 一定要保证船身稳固, 并选用适合的材质制作声呐杆, 并将其稳定的固定在船体, 防止震动的产生, 同时要确保吃水量取正确, 换能器、GPS、运动传感器正常工作、相对位置精确、参数设定合理, 并使用正确的潮位数据。
3.1 时延校准
多波束时延误差主要包括3个方面, 定位设备与测深系统间数据传输时延、波浪运动与测深系统间的时延、罗经与定位设备间的时延, 后两种产生的时延误差相对较小, 因此在通常的测量中只考虑定位时延即可。在校准时, 选取在有突起的岩石、疏浚航道等有地形起伏的水域, 采用同线同向不同速度穿越目标, 根据二者位移与速度之差求取时延, 通常高船速可为低船速的两倍。
3.2 横摇偏差校准
横摇偏差是指多波束换能器在安装过程中产生的横向角度偏差, 导致的水深测量值误差会随其离开中央波束的夹角增大而增大。由于其他误差均是垂直向误差, 因此建议首先校准横摇误差。校准时, 选取海底平坦的海区, 采用同线反向同速度各航行一次, 反复计算, 直至两个海底平面重合为止。
3.3 纵摇偏差校准
纵摇偏差是指换能器纵向安装偏差所引起的沿航迹前后向的位移。在校准时, 应选取航道边坡等地形变化较大的水域进行, 采用同线反向同速度穿越目标, 调整纵摇角度使叠加在一起的两组图形重合, 计算出纵摇角度。
3.4 艏摇偏差校准
艏摇是指在平面上由于角度便宜所引起的平面上的相应水神殿坐标位置的偏差。艏摇偏差对边沿波束的定位产生影响, 且随着深度增加而增大。在校准时, 选取航道边坡或其他陡砍, 同向同速距离最大覆盖宽度的2/3倍布设两条测线, 调整YALL值, 获得最佳的艏摇偏差角度。
4 典型案例
4.1 扫海测量
锚地是指港口中供船舶安全停泊、避风、海关边防检查、检疫、装卸货物和进行过驳编组作业的水域, 在船舶安全和检验检疫等方面发挥了极为重要的作用, 因此要对锚地的水深、地貌、地质及流速流向资料进行定期检测。图1为广东某港区锚地改扩建一期工程扫海测量时浅点多波束图片, 区域内红色部分为浅点的实际位置, 高出周围海底约0.4米, 图2为该障碍物的侧扫图片。
4.2 平台调查
多波束在海洋石油平台调查中起到了十分重要的作用, 多用于探测平台周围的海底状况和分析冲淤情况。图3 为早期CPOE3与CPOE33冲淤调查工程中CPOE33平台周围水域多波束调查成果。多波束结果可以直观的反映测区水深情况, 其中最浅处水深位于平台东北侧 (红色区域) ;最大水深位于平台南侧 (深蓝色区域) , 此外可以明显反映出渔业活动留下的零星散布的锚沟。
4.3 管线路由调查
海洋石油工业在国民生产中占着十分重要的地位, 为确保海底管道、电缆正常稳定工作, 有必要对其进行定期检测, 通常采用单波束测深、多波束测深、侧扫声纳测量、管线剖面测量等多种先进工程物探相结合的调查手段, 图4为广东某海底管线调查的多波束海底图像, 图中管沟与海管位置突出, 周围水深由浅及深的趋势明显, 为调查工作提供了极大的便利。
参考文献
[1]舒晓明.多波束在航道测量中的应用[C].湖北科学技术协会, 2005.
多波束卫星通信系统 第6篇
丰满水电站位于吉林省吉林市第二松花江中游,坝址距下游的吉林市24公里。电站始建于1937年,1948年和1949年进行恢复工作;1951年至1953年进行了扩建和改造;1953年全部建成。大坝为混凝土重力坝。由于建坝时的施工技术水平差,大坝建成以来存在着坝体混凝土强度偏低、渗漏等问题,需进行全面加固治理。
因为大坝建成以来时代较久远,很多基础资料不全或不完整,为了满足加固治理方案的设计要求,受浙江华东水电测绘有限公司委托,由镇江市长江测绘研究院对丰满水库大坝上游面不平整度进行测量,点位采集密度每平方米为20~25点,并要求对众多水下点数据进行三维DTM 建模,为丰满水电站加固治理方案的设计提供实际依据。
1 多波束测深系统
多波束测深系统的工作原理是利用水下声纳单元发射和接收脉冲声波,声波被河床或水中物体反射,部分被探头接收,由声波在水中的传播时间与声速的乘积即可计算出水深。如RESON SeaBat 8125有多达240个相互独立的换能器组成,每次可同时采集240个水深信号,这240个换能器呈120°扇形夹角,每个波束角在扇形面上为0.5°,在纵向上为1°(测船航向)并且以每秒1~40次(根据水深自动调整速率)地更新速率采集数据。这样,它对水下地形测量是以一种全覆盖的方式进行,它测量的水下地形是一个面。SeaBat8125多波束测深系统由基本的系统、辅助设备、数据实时采集处理系统和数据后处理软件包四部分组成。RESON SeaBat8125超高分辩率聚焦多波束测深系统的组成见图1。
SeaBat8125多波束测量系统工作频率:455 kHz.测深分辨率 6 mm条带覆盖宽度120°,波束角0.5°,沿航线波束角1.0°,标准宽深比测深60 m,宽深比为3.5,最大发射速率40次/s。Octans光纤罗经和运动传感器航向稳态精度:±0.1°,动态精度 ±0.2°,分辨率±0.01°,纵摇/横摇,动态精度:0.01°,跟踪速度 可达500°/s,升沉/横摆/纵摆精度: 5 cm 跟踪速度可达500°/s。声速剖面仪量程:1 400~1 550 m/s 响应时间:<1 ms 声速传感器精度:±0.06 m/s 。量程:-2°- +32°, 响应时间:<1.5 s 温度传感器精度:±0.05。
1.1 多波束测深系统的优势
多波束测深系统在水下测量领域,开创了一个自动化程度高,技术含量大的全新模式。它与传统的单波束水下测量方式和旁侧声纳水下扫测系统有着明显的优势。
1.1.1 与传统的单波束水下测量方式对比
现在水下测量领域,动态GPS平面定位配合单波束测深仪的单波束测量方式得到了广泛的应用,用单波束施测水下地形,是在待测水域内按照合适的断面间距匀布设断面,测量结束后,将断面上的数据进行处理,得到分布均匀的测点和地形特征点,生成等值线采取直线插补的方法。其一,因采集的数据不够多,特别是在相邻的断面间的地形特征点测量中被忽略,不能完全反映地形真实变化;其二,单波束测深仪的波束角一般在3°~8 °之间,对测量水深较深和地形变化较大的水域,单波束测深仪适时测量的水深本身就成在较大的误差。这种方法在滩涂测量,平坦河床测量,反映情况较可以,但在坍江河段,跨江桥梁,水库大坝等精密工程测量中,单波束测深系统的测量成图在使用上是有局限性的。
SeaBat8125多波束测量系统的波束角0.5°,在纵向上为1°(测船航向)并且以每秒1~40次(根据水深自动调整速率)的更新速率采集数据。这样,它对水下地形测量是以一种全覆盖的方式进行,它测量的水下地形是一个面,点位采集密度达每平方米为20~25点,这样,在测量区域内,地形就能较真实的反映出来。
1.1.2 与旁测声纳水下扫测系统对比
早几年,精密的水下测量曾采用旁测声纳水下扫测系统,为了验证,我们在某水面抛下添满沙子的塑枕,求证在一定深度h的水域,受水流v的作用,落距S与与深度h和水流v的相互关系,通过十几次抛枕实验,结果很不明显。通过旁测声纳水下扫测系统测量,对落枕在江底的落点位置很难确定,而落枕的姿态就更模糊了。而RenSon SeaBat8125多波束测深系统引进调试后,用该系统扫测落枕落点位置及其姿态,清晰可见。
综上可见,RenSon SeaBat8125多波束测深系统在水下测量领域,精度高,优势明显。
1.2 作业设计方案
根据华东水电测绘有限公司提供的测区资料,在多波束测深系统外业数据采集的软件环境下,利用测区四等平面控制网(点)成果,进行测区的WGS-84坐标系和1954年北京坐标系的转换参数计算,把测区原有1/1 000水下地形图转换成外业数据采集环境的导航背景图,根据测区水深情况及作业要求,编辑测区的计划测线,在距坝边沿8 m(主要目的是扫测坝面上部)及12 m(主要是扫测坝面下部)生成计划测线各一条。
用多波束系统对上游坝面进行了扫测数据采集工作,进入SeaBat8125多波束测量系统外业数据采集界面,分别打开各项数据显示窗口,在测量过程中,监视各外围设备的工作状况、数据信号质量以及相关的测量信息,及时调整测船航向,控制声纳接收信号的各项参数。
1.3 大坝侧面平整度测量
1.3.1 设备安装、参数设置、系统标定
SeaBat 8125探头(声纳换能器)是这套系统的主要设备,根据本项目作业条件和租用测船的情况,采用便携式安装方式,将探头安装在测船的右舷,其前后位置选在测船的中部偏前位置(减小噪音影响)。声纳头与安装杆连接使用螺钉固定(固定件之间用橡胶隔离),然后再与测船进行焊接安装,并在探头底部前后方向用钢丝与船体固定,保证了声纳探头与连接杆在测量过程中不会晃动及产生振动,以利提高声纳接收信号的信噪比,保证测量成果的精度。本次测绘声纳探头安装深度为水面下0.60 m。其安装见图2。
GPS卫星接收天线安装在测船顶部中间部位,光纤罗经和运动传感器安装在测船中轴线前部位置(前舱后部),并与测船中轴线保持平行,使用螺栓固定在测船上,保证了设备的稳定。
所有设备完装完毕,定义船体中心位置(COG),量取各设备相对于该中心的三维坐标。各设备安装位置参数输入后,调用图形显示画面,检查参数输入正确无误。
多波束测量系统在工作前,必须设置有关参数,用于设备的连接、修正安装偏差、获得所需要的导航测量信息及用户坐标系统。
1) 建立作业项目模板,选择外围设备及加载各设备的驱动程序。
2) 输入各设备的安装偏置参数。
3) 根据测区原有的水下地形图,建立测线文件,以及导航、测量、记录的相关显示窗口。
由于多波束系统是一套多传感器系统,它同时接收声纳探头、RTK-GPS、罗经、姿态传感器信号数据,系统需要安装参数校正。系统校正的作用是对多信号接收源的数据同步性、安装位置、安装角度和偏差进行校正试验,通过专用软件,计算出校正参数,用于改正系统测量数据,8125多波束测深系统的校正包括以下几种:GPS时延latency、横摇偏差--roll、纵摇偏差--pitch、艏摇偏差--yaw。
校正用的测线数据的测量顺序不重要(但水位变化会影响校正精度),计算各校正的先后顺序非常重要,Latency 第一,然后是 Roll, Pitch, 和 Yaw,Roll误差将导致水深值误差,因此它是最重要的校正,Roll 校正的误差应达到 0.01°的精度.校正在测区特定的地形条件下进行,测区共设计标定测线二条,测区校正参数计算成果为:GPS延迟-latency:0.075 s ;横摇-roll:-0.33度;纵摇-pitch:0.34度;舵向-yaw:3.20度。参数经验算,重复点的公差值较小,数据可靠。
标定参数的质量,直接影响最终测量成果的精度,本测区测量深度范围较大,宜选择一较深的区域进行各种标定参数的测定,在测量前,使用声速剖面仪测定测区水体的分层声速,用以精确改正多波束的水深测量值。
1.3.2 水下测量
实际测量中,在测区根据计划测线,及测点的密度要求,测船按照设计的二条测线,每条重复扫测了三次,共计六条。坝面上游最大水深约5 m,坝面外侧采集宽度约80 m。数据容量为350 M。
平面定位使用GPS相位差分方式,使用 Leica SR530双频RTK GPS接收机作参考台,参考台架设于测区边沿的四等平面控制网(点) GPS02点上。 高程控制用于水位观测,由等级水准点GPS02点通过全站仪三角高程接测至水边石墙上,在测量过程中,分别在测前及测后对水位观测点上进行水位观测,读数读至厘米,供内业水深数据改正用。
使用声速剖面仪测量测区典型水体的声速剖面数据,选择测区内的典型水域处,使用声速剖面仪实时测量水体声速剖面数据,并记录成数据文件,以供内外业数据处理使用,达到精确计算河床水深的目的。
测区填充SOUNDING GRID图水深适时三维彩色显示窗口如图3。
施测过程中,在测区合适部位,联测四等水准点,同步进行水位观测。完成测区的外业扫测工作后,现场对数据质量进行了初步验证和分析,完全符合要求。随后对仪器设备进行拆卸和整理。
2 内业制图
多波束测深系统内业数据处理使用内业制图软件包为Trimble的 Terramodel v10.13二维及三维后处理软件包,该软件包可以处理超大量的水深测量数据,实现数据的清理、剔除错误,并根据给定参数进行原始数据的改正,然后对数据进行计算、描述和制图。由于本项目测量精度要求高,多波束原始数据处理时采用每条测线,每个波束逐一处理的方法进行(见图4),以准确剔除错误信号,保证测量成果的准确性。内业处理软件对每个波束进行管道滤波处理。经过各项改正后的水深数据,通过Terramodel v10.13软件包经过水位改正,得到水深点的平面和高程数据,然后生成三维数字模型(DTM)图4。
利用水深点的平面和高程数据,还可以形成等高线及水深注记,输出多种常用格式的不同比例尺要求的测量成果。
3 小结
本次吉林市松花湖丰满水电站坝面及栈桥河床扫测,通过对外业扫测回放的240个波束条带呈像显示观察,以及对经过二维、三维编辑后的三维视图观察,上游坝面基本平整,水电站的各进水口导流槽基本完好,能完整的反映水下河床的地貌特征,同时提供了大量的水深点,为设计单位的加固治理方案的设计提供了实际依据。
外业测量前进行了方案优化设计,根据测区已有水下地形图进行计划测线的布设,测线布设的原则是保证GPS信号正常,测区范围内多波束水深信号具有100%的覆盖,兼顾扫测坝面高程尽量提高,使其重复测量精度得到充分保证。外业测量中,多波束声纳头根据水深深度的不同,其信号质量会发生变化,测量人员根据声纳监视器显示的水深信号质量,适时调节多波束声纳头的各项参数,使其达到最佳的水深接收信号。通过对本项目外业采集数据重复精度的计算,测区重复精度<0.2m。
国内早期的大型水电站项目很多,很多基础资料不全或不完整,加固治理方案的设计很难着手,通过RESON SeaBat 8125 多波束测深系统在该工程实践中得到的很好验证,为以后的同例水电大坝侧面地形测量提供了指导依据。
摘要:结合在吉林省吉林市松花湖丰满水电站大坝上游侧面不平整度测量中的应用事例,用美国RESON公司生产的SeaBat8125多波束测深系统,在该工程中进行的设备安装、参数设置、外业数据采集、内业数据处理和三维DTM模型的建立等方面的工作进行了简要的论述,并针对提高精度和保证质量方面提出了一些主要措施和要求,而且在该工程实践中得到很好的验证,为同类型水电大坝侧面地形测量提供指导依据。
关键词:不平整度测量,多波束测深系统,三维DTM模型
参考文献
[1]有色金属工业总公司.GB50026-93,工程测量规范.北京:中国计划出版社,1993
多波束卫星通信系统 第7篇
60 GHz毫米波无线通信因其能够实现数Gbit/s的数据速率和丰富的非授权频谱资源, 受到业界的广泛关注, 将成为未来最具应用潜力的通信技术之一[1,2]。
在实际通信中, 60 GHz信号氧气衰减达15 d B/km, 加上水蒸气带来的路径损耗 (Pass Loss, PL) , 导致60 GHz信号的自由空间PL与5 GHz频带相比约增加22 d B/km[3]。这样的传输特性决定其必须用波束赋形来补偿PL, 改善链路质量, 提高系统容量[4]。
穷举赋形是一种最简单的波束赋形算法, 但其复杂度高, 消耗时间长, 不适合现代高速数据传输对通信系统的要求。很多学者对赋形算法做了改进, 文献[1]提出一种混合波束赋形机制, 并设计改进型LMS算法, 结合零陷波束形成方案, 提高毫米波上行链路抗干扰能力。文献[5]在室内60 GHz信道射线跟踪模型基础上, 建立离散优化目标函数, 引入随机逼近全局优化算法, 得到全局最优或次优解, 提高系统鲁棒性。然而, 这些改进都没有明显降低算法复杂度。在3c标准基础上, 提出自适应扇区波束赋形算法, 进一步降低算法复杂度, 提高赋形性能。
1 系统模型
60 GHz无线通信中使用的波束赋形系统框图如图1所示[1]。
假设发送端为MT元阵列天线, 接收端为MR元阵列天线。无线通信双方工作流程为:发射端, 发射信号经发射权重矢量w加权, 通过不同的天线阵元发送到射频无线信道中;接收端, 对不同阵元接收到的信号进行接收权重矢量c加权求和, 然后对最终输出信号进行下变频并送入系统的信号处理模块[6]。
IEEE802.15.3c标准中提供了一种波束码本设计方案, 该方案仅调整波束方向而不调整幅度大小, 为满足实现简单、复杂度低的要求, 其权值仅由相位间隔为90°的4个复数 (±1, ±j) 组成, 假定仅针对一维线阵, 阵元间距为波长的一半。具体表达式如下[7]:
当M≤N时,
当M=2N时,
式中, w (m, n) 表示第m阵元形成第n波束时的附加权值;M表示天线阵元数目;N表示波束数目;函数fix表示向下取整;mod表示取余;每个列向量代表天线阵元的一组加权值。
定义波束码本为M×N的W矩阵, M为天线阵元数目, N为波束数目, 一般取N=2M[8]。若天线阵为一维均匀直线阵, 则第n波束阵列响应因子可表示为:
式中, m为天线阵元编号;n为阵元波束编号;Wm, n为第m阵元第n波束的加权因子;λ为信号波长;阵元间距d一般取λ/2;θ为波达方向角。
IEEE TG3c工作组在IEEE802.15.3a的SalehValenzuela (S-V) 信道模型基础上, 增加角度域信息提出了信道复基带冲激响应模型 (Channel Impulse Response, CIR) [9,10], 簇到达模型表示为:
式中, 所有信道的冲激响应呈现簇到达现象, δ (·) 表示冲激函数;K表示主径或簇总数;Lk表示第k簇中子径数;αk, l、τk, l和ωk, l表示第k簇第l条多径的幅度增益、到达时间 (TOA) 和到达角 (AOA) ;Tk和θk表示第k簇信号的平均TOA和AOA。
文献[11]给出了式 (2) 中各个变量的分布律, 由于毫米波通信中发射波束经波束成形后99.9%的能量集中在4.7°范围内, 可以仅考虑直射路径忽略非直射路径, 可得简化的接收SNR为:
式中, q和p分别为发射端和接收端波束码本编号;Aq (φ) 和Ap (θ) 分别表示发端和收端天线阵列的波束响应因子;σn2为噪声功率;Δφ为发射信号有效角度范围, 信号只有在[φk, l-Δφ, φk, l+Δφ]的有效范围内才会被接收到, 且在该范围内认为Ap (θk, l) 为常数。
在60 GHz无线通信系统中, 波束赋形的目标是通信双方找到用于双方通信的最优波束对 (popt, qopt) , 满足:
2 基于3c标准的二级波束赋形算法
IEEE802.15.3c对穷举赋形算法进行改进, 分为2个阶段:扇区级搜索 (Sector Level Search, SLS) 和波束级搜索 (Beam Level Search, BLS) [12]。设发端和收端扇区数分别为NTSector和NRSector, 每个扇区各有波束数目为NTBeam和NRBeam (NTBeam=NT/NTSector, NRBeam=NR/NRSector) 。在SLS阶段, 通信双方设备遍历所有扇区, 确定最优扇区对;在BLS阶段, 双方设备遍历最优扇区对内所有的波束, 进行二维曲面搜索, 寻找最优波束对[4]。该算法总复杂度为:
由式 (7) 可得3c标准的二级赋形算法复杂度为o (N2) 。文献[13]提出的IEEE802.11ad波束赋形算法与之类似, 均需遍历搜索, 复杂度甚至高于o (N2) 。
这种2阶段赋形算法的复杂度会随着码本数目的增大而急剧增加。为解决这个问题, 在3c标准码本的基础上, 提出了自适应扇区波束赋形改进算法。
3 自适应扇区波束赋形算法
通常情况下, 自适应波束赋形指的是根据特定的波束赋形算法, 跟踪信道环境变化, 自适应地调整阵列天线权值向量, 使波束方向图的主瓣对准来波方向, 零陷或较低的旁瓣对准干扰方向, 充分利用期望信号抑制干扰信号, 让经过加权处理后的输出信号达到最优[14]。而提出的算法是在采用IEEE802.15.3c准则构造权值向量和保证算法搜索成功率基础上, 致力于减小波束赋形算法复杂度, 提高波束搜索的速度, 并保持其良好的波束赋形性能。
提出的算法是对IEEE 802.15.3c提出的算法的进一步改善, 该算法不需要已知扇区码本, 通过已知的波束码本数目, 根据通信中实际阵列情况自动生成扇区级码本数目, 然后根据3c标准生成新的扇区码本, 故称为自适应扇区波束赋形算法 (Selfadaption Sector, SAS) 。
SAS算法复杂度的理论分析:借鉴IEEE802.15.3c提出的2阶段搜索算法。设收发天线阵元数目均为N, 波束数目为阵元数目的2倍, 即2N。将2N个波束均分入m个扇区, 每个扇区含2N/m个波束。SLS阶段选取最优扇区对, 需m2次搜索;BLS在最优扇区对内进行波束搜索, 确定最优波束对, 需 (2N/m) 2次搜索。该算法的实现复杂度可表示为m的函数, 记为f (m) :
为使f (m) 取得最小值, 对m求导得:
令f' (m) =0, 得此m值使得搜索次数最少, fmin (m) =4N。实际应用中, 若不为整数, 取m值分别为此时搜索次数约为4N, 搜索复杂度变为o (N) 。
实际通信中, 部分波束位于2个扇区交界处, 为保证搜索结果的可靠性, 对交界位置的波束进行重复分配, 即该波束会重复分给交界处的2个扇区。不失一般性, 假设每个扇区波束数目是等概率的, 取2N/m、2N/m+1和2N/m+2。从统计学角度出发, 可以用2N/m+1表示每个扇区的波束数目。此时搜索次数为, 搜索复杂度仍为o (N) , 相比于3c码本赋形算法复杂度o (N2) 而言, 算法复杂度降低了N倍。
SAS算法的具体实现过程如下:
输入数据:收发双方阵元数目NT、NR, 信道噪声功率σn2。
(1) 根据已知的波束码本数目2NT, 取使得式 (8) 值最小的解作为最优扇区数目m Optimal, 进而得到新的阵元数目New Sonar Number=m Optimal/2;
(2) 在新的阵元数目和最优扇区数目下, 按照3c标准重新设计收发双方扇区级码本;
(3) 根据式 (2) 、式 (3) 和式 (5) , 在新生成的扇区码本中寻找最优扇区对 (p Optimal, q Optimal) ;
(4) 在最优扇区内, 通过二维曲面搜索, 得到最优扇区覆盖区间和该区间内的波束;
(5) 遍历最优扇区内的所有波束, 同步骤 (3) , 取SNR最大的波束对作为双方通信的最优波束对 (popt, qopt) 。
在算法步骤中, 要使个扇区覆盖的所有用户都能够获得较高的天线增益, 最优天线阵元数为因此, 在N个阵元中选择个阵元组成新阵列, 然后按照3c标准设计的扇区级码本矩阵。接下来, 对新扇区码本进行SLS和BLS, 找出 (popt, qopt) , 完成搜索工作。下面将对SAS算法的可靠性和理论复杂度的合理性进行仿真验证。
4 Matlab仿真及性能分析
仿真在3c信道环境下, 进行100次随机试验, 根据3c标准设计收发双方的码本矩阵, 收发双方的阵元数设置为32, 波束数目则为64, 有效发射窗口设为Δφ=8°。对自适应扇区波束赋形算法可靠性的仿真验证如图2所示。可以看出, SAS算法的搜索结果均和实际搜索结果吻合得很好, 说明提出的波束赋形算法应用在实际中会有较高的搜索成功率, 是一种可靠的波束赋形算法。
SAS算法搜索复杂度 (即搜索次数) 如图3所示。可以看出, 单次搜索次数的3个取值128、144和164应该是分别对应于最优扇区内波束分别为2N/m、2N/m+1和2N/m+2这3种不同情况下, SAS算法单次搜索次数。100次随机试验的搜索均值约为150次, 与得到的理论值比较, 误差控制在3%左右, 这个结论说明了在对SAS算法理论复杂度推导过程中对最优扇区内波束数目的假设是合理的。
图4比较了SAS算法与简单穷举搜索、3c码本扇区数目为2、4和8的二级搜索理论复杂度。如图4所示, SAS算法的搜索复杂度最低, 简单穷举算法的复杂度最高, 对于3c码本二级搜索算法的复杂度随着扇区数目的增加而减小。而且, 随着阵元数目的增多, SAS算法复杂度低的优势会愈发明显。
仿真结果说明, 提出的自适应扇区级波束赋形算法能够以较低的复杂度快速寻找到适合双方通信的最优波束对, 保证通信双方可靠的数据传输。
5 结束语
提出了一种自适应扇区波束赋形算法, 根据扇区数目对整个波束赋形复杂度的影响, 由已知的天线阵元和波束数目自适应地选取扇区数目, 并合理地重复分配位于扇区交界处的波束, 提高搜索的可靠性和可信度。理论分析和试验仿真证实了该算法的实际可行性, 文中推导出该算法复杂度为ο (N) , 相比于3c二级搜索赋形算法的复杂度, 降低了N倍。通过仿真可以看出该算法相对于简单穷举算法和3c码本的二级搜索算法, 搜索复杂度进一步降低, 搜索性能得以明显提高。本文的研究基于信道状态信息已知的条件, 在现实应用环境中, 信道状态信息的获取以及获取的精确度都会影响算法的复杂度, 在后续的研究中, 可以进一步研究信道状态信息获取精确度对波束赋形算法性能的影响。
摘要:针对60GHz无线通信系统中波束赋形算法复杂度高的缺点, 提出了一种自适应扇区级波束赋形算法 (Self-adaption Sector, SAS) 。该算法利用已知波束码本数目, 结合实际信道情况自适应地生成扇区级码本数目, 进而按照IEEE802.15.3c标准重新构造扇区级和波束级码本, 根据信道状态信息, 通过二维曲面搜索, 最终得到用于收发双方通信的最优波束对。仿真结果验证了该算法的可靠性和有效性。与现有算法相比, 提出的算法能够明显降低波束搜索的复杂度, 减少赋形过程中信令传输和能量损耗。