《二次函数复习》评课(精选12篇)
《二次函数复习》评课 第1篇
临听了老师所教的《二次函数》一节复习示范课,听后收获颇多,反思更多。面对九年级面临中考和目标教学,数学课,尤其是下学期的复习课究竟怎么教?
整节课的学习,看得出章教师准备的比较充分,清楚知道学生应该理解什么,掌握什么,学会什么。老师是学生学习活动的组织者、指导者和合作者,而学生是一个发现者、探索者,有效的发挥他们的学习主体作用。章老师是让学生“体会知识”,而不是“教学生知识”,学生成了学习的主人,突出学生的主体地位。以下是我的一些肯定与不同意见及一些不成熟建议。
(一)、从教学目标的制定上来说:目标明确全面、具体、适宜,能从知识、能力、思想情感等几个方面来确定;知识目标有量化要求,能力、思想情感目标要有明确要求,体现学科特点;能以大纲为指导,体现九年级毕业考学生的特点,符合学生年龄实际和认识规律。
(二)、从目标达成来看,教学目标是明确地体现在每一教学环节中,教学手段也都能紧密地围绕目标,为实现目标服务。课堂上教师开门见山出示复习课题,尽快地接触重点内容,重点内容的教学时间得到了保证,重点知识和技能得到了巩固和强化(求不规则四边形的面积问题)。
(三)、教学思路:符合教学内容实际,符合学生实际;有一定的独创性,超凡脱俗给学生以新鲜的感受;教学思路的层次,脉络清晰;章老师在课堂上教学思路实际运作十分清晰。
(四)、语言教态:章老师课堂上的教态是明朗、快活、庄重,富有感染力。仪表端庄,举止从容,态度热情,热爱学生,师生情感交融。语言清楚(有点带黄坦口腔),富有启发性。语调高,声音洪亮,快慢适度,抑扬顿挫,富于变化。
(五)、师生互动:本节课上师生互动频繁,形成了良好的双边关系使教师的主导作用和学生和主体作用和主观能动性得到了充分的发挥。通过多媒体的制作使学生的注意力能长时间的集中在教师的教学内容上。
(六)、本节亮的:上课开始,教师开门见山出示复习课题,接着出示第一张ppt,例1(1)填空。让学生直接做抛物线中几个最基本的点的坐标,这也是新授课不同之处。新授课未必上课就出示课题,它可以在新授中,甚至在学习结束时。而复习课上的内容都是学生早就知道的,不必在转弯抹角,而应直截了当地进入主题。学生回答小结后,出示例1(2)求不规则四边形的面积。让学生自己去体会发现二次函数的图像有关面积的求法,并且放手让学生独立思考,时间足够,学生每回答一种方法,教师作一小结(转化思想)。这样的做法可以让学生自己积极的思考,使学生的思维变的更积极,更主动。体现出章老师知道在教学过程中着重发展学生的自主性、独立性和创造性,知道教师的教是为学生的学服务的。所以说章老师这点的想法、做法上看是成功的。最后的小结让学生归纳,也很好。
(七)、不同意见:a:在例1的变式(3)中,抛物线平移后,出现的抛物线的一次项系数、常数项是带字母的多项式难度加大。学生几乎不会,因初中不要求用十字相乘因式分解,也不要求在根号内含字母的计算化简。用含m的代数式表示A、B两点的坐标。几乎“全军覆没”。例1(4)又是比较简单。但(3)不会,又何做(4)呢?b:例1(2)图形的割、补是求不规则图形的面积的常用方法教师没点拨。数形结合是求二次函数问题中的关键教师没强调。
(八)、不成熟建议:A:例1(3)改为简单,上、下平移几个单位用具体数字,把{4}中的改成等于几分之几的三角形面积,在x轴下方的抛物线上也有点的坐标。B:图形的割、补是求不规则图形的面积的常用方法,数形结合是求二次函数问题中的关键,教师要点拨,并强调。C: 每次都让学生站来回答问题,给予他及时的肯定与鼓励,使学生在肯定中变的积极,在肯定中变的自信,在肯定中得到进步。D::课堂语言组织再精炼些,使我们的学生在我们的语言中感觉到学习的乐趣、领受知识、训练思维。临时应变能力有待加强。这仅是我个人的想法。
本节课以一个题为基础,进行了平移变化,充分体现了变题的好处,而且也让学生从一道题出发,体现了数学无穷的魅力。这是一节成功的复习示范课
《二次函数复习》评课 第2篇
九年级数学《二次函数的图像和性质》评课稿
陈老师执教的《二次函数的图像和性质》是很成功的一趟课。主要表现在以下。
一是教学设计严谨,环环相扣,每个教学步骤之间都有逻辑的联系。
二是在课堂教学中实行分组竞争教学,以激发学生学习的主动性和积极性,课堂气氛热烈,师生互动多。
三是对教材的研究深,重点、难点把握好,以聋人单考单招真题为切入口和教学内容,以点带面复习教学知识。
四是应用了几何画板,作为一个简单易用的数学教学软件,我一直倡导数学老师都应该学,不仅可以用在课堂教学上,几何画板在出一些练习题需要画图时也有很多优势,比纯粹用word画图方便多了。
但在课堂教学过程中也有一些不足之处,在此提出一起讨论。
一是教师讲的偏多。这是一节复习课,复习课的主要目的是梳理知识、理清思路,对某类题、某系列知识进行重点分析、深挖、加固。在这个过程中教师应多引导学生,对学生在学习过程中遇到的问题一些讲解和点拨即可。这样看起来教学气氛会稍差,但如果能精心设计练习,一样能收到很好的教学效果。这样一堂课既有学生自主练习又有教师适时分析引导,动静结合,张弛有度,学生、老师都不会感到累。
二是建议一节课就讲一个重点知识。本节课内容除了二次函数的图像和性质外,还有二次函数和不等式之间的关系。感觉教学内容比较多,其实二次函数的图像和性质已包含了很多内容,这些基础知识学生能够掌握,对于学习能力一般的聋生已经很了不起了。如果真都能完全掌握,则对该部分知识进行拓展和深化。这样一节课看起来是一个整体,很完整。
高三复习专题:二次函数 第3篇
一、二次函数的表达式
1. 标准式 (定义式) :
2. 顶点式:
3. 两根式 (零点式) :
根据题目所给的不同条件, 灵活地选用上述三种形式求解二次函数解析式, 将会得心应手。
例1已知二次函数的图象过 (-1, -6) , (1, -2) 和 (2, 3) 三点, 求二次函数的解析式。
解:用标准式。
∵图像过三点 (-1, -6) 、 (1, -2) 、 (2, 3) ,
∴可设y=f (x) =ax2+bx+c,
且有a-b+c=-6①, a+b+c=-2②, 4a+2b+c=3③,
解之得:a=1, b=2, c=-5,
∴所求二次函数为y=x2+2x-5。
例2二次函数的图像通过点 (2, -5) , 且它的顶点坐标为 (1, -8) , 求它的解析式。
解:∵它的顶点坐标已知,
∴可设f (x) =a (x-1) 2-8。
又函数图像通过点 (2, -5) ,
∴a (2-1) 2-8=-5,
解之, 得a=3,
故所求的二次函数为:
f (x) =3 (x-1) 2-8,
即:f (x) =3x2-6x-5。
评注:以顶点坐标设顶点式a (x-h) 2+k, 只剩下二次项系数a为待定常数, 以另一条件代入得到关于a的一元一次方程求a, 这比设标准式要来得简便得多。
例3已知二次函数的图像过 (-2, 0) 和 (3, 0) 两点, 并且它的顶点的纵坐标为1 25/4, 求它的解析式。
解:∵ (-2, 0) 和 (3, 0) 是x轴上的两点,
∴x1=-2, x2=3,
它的顶点的纵坐标为-25/4a,
∴-25/4a=125/4, a=-5,
故所求的二次函数为:
二、二次函数的最值
我们知道, 二次函数f (x) =ax2+bx+c (a≠0) 利用配方法, 可以得出:
在初中, x的取值范围是一切实数, 那时求最值只需记住结论,
在高中, x的取值范围更多的是一个闭区间, 此时的最值可能在三点处取得:1.左端点处。2.右端点处。3.对称轴处。如果这个闭区间中含有参数, 那么要根据抛物线对称轴的左右两边单调性来求最值。
《二次函数复习》评课 第4篇
高中阶段,尤其是高三复习阶段,要对二次函数的基本概念和基本性质(图像以及单调性、奇偶性、有界性)能够灵活应用,还需要再深入学习。
一、进一步深入理解函数概念
初中阶段已经讲述了函数的定义,高中阶段主要是用映射的观点来阐明函数,重新学习函数概念,这时就可以用学生已经有一定了解的函数,特别是以二次函数为例,来更深地认识函数的概念。二次函数是从一个集合A(定义域)到集合B(值域)上的映射f:A→B,使得集合B中的元素y=ax2+bx+c(a≠0)与集合A中的元素想x对应,记为f(x)=ax2+bx+c(a≠0),这里ax2+bx+c表示对应法则,又表示定义域中的元素x在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:
类型1:已知f(x)=2x2+x+2,求f(x+1)。
这里不能把f(x+1)理解为x=x+1时的函数值,只能理解为自变量为x+1的函数值。
类型2:设f(x+1)=x2-4x+1,求f(x)。
这个问题理解为,已知在对应法则f下,定义域中的元素x+1的象是x-4x+1,求定义域中元素x的象,其本质是求对应法则。一般把所给表达式表示成x+1的多项式。f(x+1)=x2-4x+1=(x+1)2-6(x+1)+6,再用x代x+1,得f(x)=x2-6x+6。
二、二次函数的单调性,最值与图像
二次函数的应用本身是学习二次函数的图像与性质后,检验学生应用所学知识解决问题能力的一个综合考查。新课标中要求学生能通过对问题的分析确定二次函数的表达式,体会其意义,能根据图像的性质解决简单的应用问题,而最值问题又是利用二次函数知识解决的最常见、最有应用价值的问题之一。
在高中阶段学习单调性时,必须让学生对二次函数y=ax2+bx+c在区间 及
上单调性的结论用定义进行严格地论证,使它建立在严谨理论的基础上,与此同时,进一步充分利用函数图像的直观性,给学生配以适当的练习,使学生逐步自觉地利用图像学习与二次函数有关的一些函数的单调性。
类型3:画出下列函数的图像,并通过图像研究①y=x2+2|x-1|-1;②y=|x2-1|;③y=x2+2|x|-1。
这里要使学生注意这些函数与二次函数的差异和联系。掌握把含有绝对值记号的函数用分段函数去表示,然后画出其图像。
类型4:设F(x)= x2-2x-1在区间[t,t+1]上的最小值是g(t)。求g(t)并画出y=g (t)的图像。
解:F(x)=x2-2x-1=(x-1)2-2,在x=1时,取最小值-2。
当1∈[t,t+1],即0≤t≤1时,g(t)=-2,
当t>1时,g(t)=f(t)=t2-2t-1;
当t<0时,g(t)=f(t+1)=t2-2t-1。
t2-2(t<0)
∴g(t)=-2(0≤t≤1)
t2-2t-1(t>1)
首先要使学生弄清楚题意。一般地,一个二次函数在实数集合R上或是只有最小值,或是只有最大值,但当定义域发生变化时,取最大值或最小值的情况也随之变化,为了巩固和熟悉这方面知识,可以再给学生补充一些练习。
二次函数作为函数各种重要性质的载体。其素材可以对函数的性态进行全面的分析和探究,以其为对象可以把数和形有机地融合起来,使数形结合、分类讨论、等价转化、函数和方程的思想方法得到充分的发挥,以其为纽带可以沟通函数、方程、不等式、数列和曲线等知识之间的内在联系,使数学知识的综合运用得到很好的体现。
二次函数复习教案 第5篇
摘要:水彩画在中学美术教育中占据着重要的地位,它不仅可以提升中学生的造型能力、色彩能力,同时也可以强化他们的审美素养。这里,笔者将结合自己的教学经验,来谈一谈水彩画技法教学的一点心得,以期大方之家给予批评指正。
关键词:中学美术课;水彩画;技法教学
一、水彩画技法指导
学生在画水彩画之前需要有这样的理念:从整体着眼,从局部入手。在脑海中必须有画面的整体构思与布局,在这个大前提下,再将画面有效地分成若干个小部分,逐一完成。具体过程下面将分条阐述。
(一)画面勾勒轮廓阶段
第一步就是教师指导学生先勾勒出素描稿,整体与局部的分配情况需要合理、恰切。为了提升上色的准确性、恰切性,整个过程需要运用铅笔来完成,并且在素描的过程中,需要有效地表现反光、高光、投影以及明暗交界线等。其中投影、暗部需要淡淡地用铅笔进行标记。这个素描过程至关重要,成为关键的开端。
(二)画面着色阶段
接下来就需要用刷子蘸上清水,在画纸上刷一遍,让水完全浸湿画纸。吃水饱和的画纸,在短时间内,就不会立刻干燥,在这种情况下,才有助于具体干湿画法的实践、运用。
水彩的透明特点需要被全面地观照、审视,主要着色程序是由浅至深,特定物体的受光面需要先画出来,紧接着再对其背光面进行绘画。只有这样才能够有效地表现水彩画的明调与暗调。最后,将特定物体颜色最深的细部完成。可以说水彩的表现方法,通常来说,主要分为干画法、湿画法以及干湿并用法。在中学美术教学中,我们提倡采用干湿并用法,即有的地方使用干画法,而有的地方则采用湿画法。这种方法易于被中学生接受,并且表现力相对较强。再者,我们可以有效利用湿画法来绘画每一个客观物象。
最后就是画面的整理、完善环节。局部独立物象的逐一绘画,这种罗列可能会导致整个画面的融合程度不足,进而容易产生层次方面的误差感,给观赏者一种拼凑的印象。鉴于此,教师必须指导学生进行画面的整体处理,旨在让每一个局部都被统摄到整个画面中去,成为一个部分分割的成分。例如前景特定物象应该是实的,需要在这个物象的主要部位,将轮廓线凸显。而后面的特定物象应该是虚的。较之前者,后者需要淡化其色彩和形体方面的处理,只有这样才能够创设出层次分明、立体感较强的画面效果。如果整个画面色彩显得有些乱,就应该在基调的范围内进行有效整理。如果整个画面较为单调的话,就应该将环境色恰当地融入其中,进而色彩的丰富感就可以被提升。
二、重要注意事项强调
在学生对范画的欣赏、感悟过程中,教师需要对每一张画,它的具体画法、运用色彩等方面进行全面而细致地解读,这样才能使得学生对水彩画的特点、画法有一个整体的了解和体认。同时,需要提醒学生:如果调色过多,就可能丧失水彩画明快、透明的风格特征。而且涂色需要争取一次性完成,至多不可以超过三次,涂色越多,整个画面就会变得更为脏乱。鉴于此,在涂色之前,教师必须讲清楚调色与控制画笔中水分的具体措施,并且让学生全面把握绘画所要使用的工具,只有充分熟悉工具的使用方法,才能谈及具体涂色过程的开展。
需要强化实践教学,即可以将学生带到大自然中去绘画。教师可以一边绘画,一边讲解,在此过程中,将特定物象的具体画法,普遍存在的问题以及解决问题的办法,一一告诉学生。教师的这种示范教学,不仅可以给予学生直观的感受,同时也让学生了解了具体的绘画方法,如何规避不该出现的失误。另外,对于学生的作品不足之处,教师需要给予亲自改正,这种教学方法会让学生的绘画技巧迅速提升的。
另外,教师也可以将水彩画的绘画技巧编成一系列的口诀,这样,学生记忆与掌握水彩画相关技法将会变得事半而功倍。
三、水彩画技法教学示例
这里以水彩风景写生为示例对象。在写生的起初,需要力求一次性完成天空的绘画,当整体基调确定之后,余下的景物色彩需要与之协调搭配。当天空的绘画尚未“风干”之前,需要立刻将远山,抑或者是远树勾画出来。这样就会使得它与天空叠加的部分自然融合,避免了分离之感的产生。这样就契合了远虚近实的绘画要求。
画每一个特定物象之时,需要从左到右刷一遍清水,因为室外的空气是比较干燥的,这样的环境下,如果不刷水,湿画法则难以为继。倒映在水中的树木和房屋需要在画纸湿条件下,立刻涂色,进而产生朦朦胧胧的倒影效果。待画面干了之后,在使用干画法,小心翼翼地在水面上画出几道波纹来,这样房屋和树木的倒影就显得愈加真实生动了。同时,水岸上的物象,需要使用干画法进行绘画,这样就会使得这些物象更为实在、凸显。进而与水中倒影构成鲜明的对比。
画面的主体部分需要着力进行刻画,进而让整个画面具有凝聚力。在让学生充分领悟水彩画技法的同时,还需要让学生懂得艺术地处理画面的空间。最后,也就是对整个画面进行整理,湿画法的缺陷在于使得画面显得很“碎”,因此需要在画面的色彩和层次方面进行整体的调整,这样,整个画面就会变得和谐统一了。
二次函数复习教案 第6篇
18课时 二次函数(二)
1.理解二次函数与一元二次方程之间的关系;
2.结合方程根的性质、一元二次方程根的判别式,判定抛物线与x轴的交点情况; 3.会利用韦达定理解决有关二次函数的问题。4.会利用二次函数的图象及性质解决有关几何问题。教学重点 二次函数性质的综合运用 教学难点 二次函数性质的综合运用 教法 讲练结合 教学过程
一、知识梳理: 1.二次函数与一元二次方程的关系:
(1)一元二次方程ax2+bx+c=0就是二次函数y=ax2+bx+c当函数值y为0时的情况.
(2)二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点;当二次函数y=ax+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.(3)①当二次函数y=ax2+bx+c的图象与 x轴有两个交点时,则一元二次方程ax2+bx+c=0有两个不相等的实数根,△>0;
②当二次函数y=ax2+bx+c的图象与x轴有一个交点时,则一元二次方程ax2+bx+c=0有两个相等的实数根,△=0;
③当二次函数y=ax2+ bx+c的图象与 x轴没有交点时,则一元二次方程ax2+bx+c=0没有实数根,△<0.2.二次函数的应用:
(1)二次函数常用来解决优化问题,这类问题实际上就是求函数最大(小)值;(2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;运用二次函数的知识解决实际问题中的最大(小)值.(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;
二、经典考题剖析: 例题1.已知二次函数y=x2-6x+8,求:(1)抛物线与x轴和y轴相交的交点坐标;(2)抛物线的顶点坐标;
(3)画出此抛物线图象,利用图象回答下列问题:
①方程x2-6x+8=0的解是什么?
②x取什么值时,函数值大于0?
③x取什么值时,函数值小于0?
解:(1)由题意,得x2-6x+8=0.则(x-2)(x-4)= 0,x1=2,x2=4.∴与x轴交点为(2,0)和(4,0);当x=0时,y=8.∴抛物线与y轴交点为(0,8);(2)抛物线解析式可化为y=x2-6x+8=(x-3)2-1;
∴抛物线的顶点坐标为(3,-1)
(3)如图所示.①由图象知,x2-6x+8=0的解为x1=2,x2=4.
②当x<2或x>4时,函数值大于0;③当2<x<4时,函数值小于0. 例题
2、已知二次函数yx2(m2)xm1,(1)试说明:不论m取任何实数,这个二次函数的图象必与x轴有两个交点;(2)m为何值时,这两个交点都在原点的左侧?
分析:(1)要说明不论m取任何实数,二次函数yx2(m2)xm1的图象必与x轴有两个交点,只要说明方程x2(m2)xm10有两个不相等的实数根,即△>0.
(2)两个交点都在原点的左侧,也就是方程x2(m2)xm10有两个负实数根,因而必须符合条件①△>0,②x1x20,③x1x20.综合以上条件,可求得m的值的范围.
三、合作交流:
1、若二次函数y=-x+2x+k的部分图象如图所示,关于x的一元二次方程-x+2x+k=0的一个解x1 = 3,则另一个解x2 = _____。
2、抛物线y=kx-7x-7的图象与x轴有交点,则k的取值范围是。
四、中考压轴题赏析:(分组合作)
已知:二次函数yx2(m1)xm的图象交x轴于A(x1,0)、B(x2,0)两点,2交y轴正半轴于点C,且x12x210。2(1)求此二次函数的解析式;
5)的直线与抛物线交于点M、N,与x轴交于点E,2使得点M、N关于点E对称?若存在,求直线MN的解析式;若不存在,说明理由。(2)是否存在过点D(0,-解:(1)∵x1+x2=10,∴(x1+x2)-2x1x2=10,根据根与系数的关系得:x1+x2=m+1, x1x2=m 222∴(m+1)2-2m=10,∴m=3,m=-3,又∵点C在y轴的正半轴上,∴m = 3,∴所求抛物线的解析式为:y=x-4x+3;(2)假设过点D(0,-5)的直线与抛物线交于M(xM,yM)、N(xN,yN)两22点,与x轴交于点E,使得M、N两点关于点E对称.
5设直线MN的解析式:y=kx-,2则有:yM+yN=0,(6分)由 得x-4x+3=kx-,并同类项得x2-(k+4)x+11=0,2移项后
合52∴xM+xN=k+4.
∴52yM+yN=kxM-+kxN-=k(xM+xN)-5=0,即k(k+4)-5=0,∴k=1或k=-5.
当k=-5时,方程x-(k+4)x+11=0的判别式△<0,直线MN与抛物线无交点,2522∴k = 1,3
∴直线MN的解析式为y=x-5,2∴此时直线过一、三、四象限,与抛物线有交点;
∴存在过点D(0,-5)的直线与抛物线交于M,N两点,与x轴交于点E.使得
2M、N两点关于点E对称.
点评:此题巧妙利用了一元二次方程根与系数的关系.在(2)中,将直线与抛物线的交点问题转化为根与系数的关系来解答,考查了同学们的整体思维能力.
五、反思与提高:
1、本节课主要复习了哪些知识,你印象最深的是什么?
2、通过本节课的函数学习,你认为自己还有哪些地方是需要提高的?
六、备考训练:
《二次函数复习》评课 第7篇
这节课采用了“问题探究”的教学模式,教学过程注重学习方法、思维方法,注重探索方法,注重到学生的思维起点,搭建平台,同时渗透数形结合的思想,增强学生运用数学思想方法解决问题的意识,让学生主动获取知识,同时也让学生知道这些知识是如何被发现的,结论是如何获得的,体现了“方法比知识更重要”。
本节课从学生回忆一次函数、反比例函数的图象入手,展示生活中与二次函数图象相关的图片激发学生的学习热情引入新课让学生进入独学过程。每个小组成员各自在同一个坐标系内作出一组二次函数图象。在第二部分合作探究的学习过程中教师设计了三个问题:(1)通常怎样作一个函数的.图象,要特别注意什么?(2)二次函数y=ax2的图象是什么?所画的图象有何相同点,不同点?(3)在同一个坐标系中画函数y=ax2与y=-ax2的图象怎样画简便?教师的教学设计思路清晰,注意了学生的知识生成点,教师在整个教学过程中起到一个引领的作用。学生是在围绕教师的教学设计中进行有序地学习,在小组讨论中学生积极参与,体现了学生良好的学习习惯,从学生的课堂反应看,课堂教学效果是比较理想的。
本节课值得商榷的问题
1.学生是第一次接触二次函数,在第一个环节独学过程中学生画出二次函数的图象部分学生是有困难的,有的学生即使能画出来但也不规范,在这一个环节中教师可以结合学生作的图象进行展示说说优缺点,并进行适当的引导和课件示范起到画龙点睛的作用,规范作法和注意事项。
中考二次函数与复习策略 第8篇
1 中考二次函数的几类题型
例1 (2011年甘肃中考题) 抛物线y=x2-2x+1的顶点坐标是 () .
(A) (1, 0) (B) (-1, 0)
(C) (-2, 1) (D) (2, -1)
考点二次函数的图像与性质、顶点的坐标.
分析本题属于基础题, 由于题目给出了抛物线的一般形式, 可以直接利用配方法或公式法写出抛物线的顶点坐标 (1, 0) , 故选A.
例2 (2011年甘肃中考题) 已知二次函数y=ax2+bx+c (a≠0) 的图像如图1所示, 有下列4个结论: (1) abc>0; (2) b0; (4) b2-4ac>0.其中正确的结论有 () .
(A) 1个 (B) 2个 (C) 3个 (D) 4个
考点二次函数的图像与性质.借助平面直角坐标系, 以数形结合的方式研究二次函数图像和性质.
分析本题考查同学们的识图能力, 函数的性质和数形结合思想.由图可知, a<0, c>0, 又由对称轴可分析得b>0, 当x=-1和x=2时可分别代入解析式验证.故 (3) (4) 正确.选B
考点二次函数的图像与性质、图形变换.
分析本题考查学生的理解, 运用二次函数的图像与性质、图形变换的特点, 分析抛物线图像变换的情况, 属于能力题.选 (4) .
例4 (2010年甘肃中考题) 向空中发射一枚炮弹, 经x秒后的高度为y米, 且时间与高度的关系为y=ax2+bx+c (a≠0) .若此炮弹在第7秒与第14秒时的高度相等, 则在下列时间中炮弹所在高度最高的是 () .
(A) 第8秒 (B) 第10秒
(C) 第12秒 (D) 第15秒
考点二次函数的应用.
分析本题重点根据题意画出符合题目的大致图像.
2 中考二次函数的考查新动向
2.1 将二次函数与几何变换相结合
例5如图2, 平面直角坐标系中有一张透明纸片, 透明纸片上有抛物线y=x2及一点P (2, 4) .若将此透明纸片向右、向上移动后, 得抛物线的顶点为 (7, 2) , 则此时点P的坐标是 () .
(A) (9, 4) (B) (9, 6)
(C) (10, 4) (D) (10, 6)
考点二次函数图像与几何变换.
分析先根据“左加右减、上加下减”的原则得出新抛物线的解析式, 再求出P点坐标即可.
解因为抛物线y=x2移动至顶点坐标为 (7, 2) 时的新抛物线解析式为y= (x-7) 2+2, 即先向右平移7个单位, 再向上平移2个单位, 所以P (2, 4) 应先向右平移7个单位, 再向上平移2个单位, 其新坐标变为 (2+7, 4+2) , 即 (9, 6) .故选B.
评析图形与变换是《初中数学新课程标准》中新增加的内容, 本题考查的是二次函数的图像与几何变换, 把它与二次函数相结合, 既考查了学生几何建模以及探究活动的能力, 又考查了学生对几何与代数之间的联系、多角度、多层次综合运用数学知识、数学思想方法分析和解决问题的能力, 是今后命题的重点.
2.2 在初高中知识衔接处命题
2.2.1 求分段函数解析式
例6心理学家研究发现, 一般情况下, 学生的注意力随着教师讲课时间的变化而变化, 讲课开始时, 学生注意力逐步增强, 中间有一段时间学生的注意力保持较为理想的状态, 随后学生的注意力开始分散, 经过实验分析可知, 学生的注意力y随时间t的变化规律有如下关系式:
(1) 讲课开始后第5 min时与讲课开始后第25min时比较, 何时学生的注意力更集中?
(2) 讲课开始后多少分钟, 学生的注意力最集中?能持续多少分钟?
(3) 一道数学难题, 需要讲解24min, 为了数学效果较好, 要求学生的注意力不低于180, 那么经过适当安排, 老师能否在学生注意力达到所需的状态下讲解完这道题目?
分析 (1) 把t=5, t=25分别代入各自时间段的函数表达式.求出对应的y值进行比较; (2) 这是求各时间段的最大值问题; (3) 这是求当y=180时, 各时间段的时间, 然后进行比较.
解 (1) 当t=5时, y=195, 当t=25时, y=205.
所以讲课开始后第25分钟时学生的注意力比讲课开始5分钟时更集中.
(2) 当0
所以a=-1<0, 所以y有最大值, 即当t=10min, y最大值=240.
当20
所以讲课开始后10min时, 学生的注意力最集中, 能持续10min.
(3) 当0
当20
所以学生注意力在180以上的持续时间为28.57-4=24.57 (min)
说明此题是分段函数的问题, 因此, 在求“学生何时注意力最集中”这一问题时, 不仅是要考虑各时间段的函数何时取最大值, 还要考虑自变量允许的取值范围.如第 (2) 问, 配方得y=- (t-12) 2+244, 由函数表达式应得到当t=12时, 注意力最集中.但实际上, 在这个函数中, t的最大值是10 min, 所以考虑问题时, 要注意实际条件, 只能取t=10.
2.2.2 二次函数与一元二次方程、一元二次不等式的联系
例7如图3, 以40m/s的速度将小球沿与地面成30°角的方向击出时, 球的飞行路线将是一条抛物线.如果不考虑空气阻力, 球的飞行高度h (单位:m) 与飞行时间t (单位:s) 之间具有关系h=20t-5t2.考虑以下问题:
(1) 球的飞行高度能否达到15 m?如能, 需要多少飞行时间?
(2) 球的飞行高度能否达到20 m?如能, 需要多少飞行时间?
(3) 球的飞行高度能否达到20.5m?为什么?
(4) 球从飞出到落地要用多少时间?
分析此问题主要考查了二次函数与一元二次方程之间的关系, 同时也考查了数形结合的思想方法.
2.3 构建二次函数模型解决实际问题
例8如图4所示, 有一座抛物线形拱桥, 桥下面在正常水位AB时, 宽20m, 水位上升3m就达到警戒线CD, 这时水面宽度为10m.
(1) 在如图4所示的坐标系中求抛物线的解析式;
(2) 若洪水到来时, 水位以每小时0.2m的速度上升, 从警戒线开始, 再持续多少小时才能到达拱桥桥顶?
分析根据条件设D, B两点的坐标, 代入y=ax2中求解析式, 点B的纵坐标值与洪水的深度有关, 即可求出持续时间.
解 (1) 设所求抛物线解析式为y=ax2, 设D (5, b) , 则B (10, b-3) , 所以
例9在数学活动课上, 同学们用一根长为1米的细绳围矩形.
(1) 小芳围出了一个面积为600cm2的矩形, 请你算一算, 她围成的矩形的边长是多少?
(2) 小华想用这根细绳围成一个面积尽可能大的矩形, 请你用所学过的知识帮他分析应该怎么围, 并求出最大面积.
分析 (1) 设她围成的矩形的一边长为xcm, 得x (50-x) =600, x1=20, x2=30.当x=20时, 50-x=30cm;当x=30时, 50-x=20cm, 所以小芳围成的矩形的两邻边分别是20cm, 30cm.
(2) 设围成矩形的一边长为xcm, 面积为ycm2, 则有y=x (50-x) , 即y=-x2+50x, y=- (x-25) 2+625, 当x=25时, ymax=625;此时, 50-x=25, 矩形成为正方形.即用这根细绳围成一个边长为25cm的正方形时, 其面积最大, 最大面积是625cm2.
3 复习策略
3.1 立足课本, 抓好基础
函数的基本概念和简单性质的应用以及函数表达式的确定等内容都是函数中的基础知识, 我们只要在第一轮复习中落实好双基, 学生对这类问题一般都能得分.在复习的过程中我们可以通过层层设问, 多方位、多角度使双基知识得到巩固深化, 目的是使学生明确在后阶段的复习中也应重视课本, 落实双基.
3.2 强化数形结合意识, 总结解题规律
函数的图像和性质是中考的重点与热点.利用数形结合法, 抓住图像特征掌握函数的性质是解决问题的主要方法.复习中应强化数形结合意识, 掌握函数的基本技能和方法, 注意观察、归纳、分析、比较, 总结基本的方法、规律.在复习的过程中可以通过一些具有代表性的经过挑选的例题, 反复让学生进行练习, 让学生在练习中总结解题的规律.
3.3 针对中考重点与热点, 精心选材, 抓好训练
浅谈二次函数复习课的反思 第9篇
关键词:新;序;巧;活
教学设计:(一)知识梳理(用多媒体打出);(二)看一看(用几何画板演示抛物线的各种情形);(三)想一想(典型例题分析);(四)做一做(用学案练习题)。由于采用了学案的教学形式,并运用多媒体课件以及几何画板,课堂效率大为提高,并给学生的主体参与提供了可能。通过本节课的备课与教学,我受益匪浅,感受颇多:
一、课堂设计和选题突出“新”
课堂教学设计体现教师为主导、学生为主体的教学理念,采用学案的形式,“问题情境—建立模型—解释、应用与拓展”的模式,体现了课堂教学的新理念。教学中做到精选典例,选取有“问题串”的例题,打破单一题型对学生思维的阻碍,这更有利于培养学生的思维能力和创新精神。
二、练习题的安排突出“序”
前面的例题较为简单,后续练习则突出综合性。先易后难的习题训练满足了不同层次学生的学习需要,也符合学生知识学习的规律。本节课的两个例题思路和解法相同,既可以开拓学生的思维,又可以使学生掌握解决一类问题的方式方法。
三、解决问题的方法突出“巧”
建构主义学习理论认为,学生的学习不是被动地接受,而是一种主动探究与建构,表现在学生解决问题上,会根据自己对知识的理解,随个人经验、经历的不同而不同。本节课后一个大题的安排(有开放性)就是考虑到学生学习的差异。前面的填空题的条件和结论为后面大题的解决提供了方法上的引领,突出了教师对内容安排的巧妙设计。
四、视学习情况调整内容突出“活”
本节课是二次函数的复习课,既要给学生展示二次函数的完整知识复习,又要突出重点。为此,虚心倾听各位教师的建议,对教法和课件作了多次调整和修改。课堂上安排的10个练习题是从概念、图象、性质和综合应用等几个方面进行的。教学上真可谓“教学有法,教无定法”。学生的基础、学习习惯不尽相同,教师在不同情境中的发挥,才有了千姿百态的教学情境。本课最成功之处在于确定二次函数解析式的几个问题的分析。
总的来说,认真准备和不断完善,是本节复习示范课取得良好效果的主要原因。但教学也是一门令人遗憾的艺术,回想起来还有许多环节需要进一步改进和完善,比如教师和学生之间的配合不协调,怎样才能更好地兼顾师生双方的感受等。在实践中获得灵感,在交流中撞出智慧,在反思中调整思路,在坚持中取得进步。
二次函数小结与复习 第10篇
(二)1、填表
2、我国是最早发明火箭的国家,制作火箭模型、模拟火箭升空是青少年喜爱的一项科技活动,已知学校航模组设计制作的火箭的升空高度h(m)与飞行的时间t(s)的关系是h=-t2+26t+1,如果火箭在点火升空到最高点时打开降落伞,那么火箭点火后多少时间降落伞打开?这时该火箭的高度是多少?
3、美国圣路易斯市有一座巨大的拱门,这座拱门高和底宽都是192m的不锈钢拱门是美国开发西部的标志性建筑,如果把拱门看作一条抛物线,你能建立恰当的平面直角坐标系并写出这条抛物线对应的函数关系吗?试试看
4、一艘装有防汛器材的船,露出水面部分的宽为4m,高为0.75m,当水面距抛物线形拱桥的拱顶5m时,桥洞内水面宽为8m,要使该船顺利通过拱桥,水面距拱顶的高度至少多高?
5、把二次函数y=x2+bx+c的图象沿y轴向下平移1个单位长度,再沿x轴向左平移5个单位,所得的抛物线的顶点坐标是(-2,0),写出原抛物线所对应的函数关系式。
6、心理学家研究发现,某年龄段的学生,30min内对概念的接受能力y与提出概念 的时间x之间满足函数关系:y=-0.1x2+2.6x+43(0《x《30),试判断何时学生接受概念的能力最强?什么时段学生接受概念的能力逐步降低?
7、如图,在矩形ABCD中,AB=16cm,BC=6cm,动点P、Q分别从A、C出发,点P以3cm/s的速度向B移动,一直到点B为止,点Q以2cm/s的速度向点D移动
(1)试写出P、Q两点的距离y(cm)与P、Q两点的移动时间x(s)之间的函数关系式;
(2)经过多长时间P、Q两点之间的距离最小(注:算术平方根的值随着被开方数的增大而增大,随着被开方数的减小而减小)?
8、某地要建造一个圆形水池,在水池中央垂直于水面安装一个装饰柱OA,O恰在水面中心,柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,形状如图①,在如图②的平面直角坐标系中,水流喷出的高度y(m)与水平距离x的关系式满足(1)求OA的高度;
二次函数复习课教学反思 第11篇
对于二次函数总体复习的时间定为三个课时,在课前先布置一张练习卷,批改后找到学生错误的地方,进行分析,为第一节课作好准备.从学生完成的情况来看,二次函数基本的知识点掌握的还不错,但是大部分学生简答不够认真,只有最后的结果,没有具体的过程.对于二次函数的综合运用还存在一定问题.同时还有求函数解析式,对于顶点式,和一般式也有一定的问题.利用二次函数解决实际问题中求最大或者最小值的题目,书写的格式还是需要强调.
一、本章知识点的主要内容有:
1.二次函数的概念.考查的方式是判断函数是否是二次函数,需要注意的是分母里有二次的函数,可以化掉二次项的函数,以及二次项系数为零的函数.
2.求二次函数的解析式.用待定系数法求,设有三种形式,一般形式,分解式,配方式.另外还有根据实际问题求解析式.
特别是一些辩证性很强的题目,比如售价为某一个值时销售量为具体的某一个值,当售价提高后,销售量减少.为了获得最大的利润,应该怎样定价格.这种是典型的二次函数解决实际问题的类型.同样的背景在八年级的时候也有出现,通过一元二次方程解决.
3.二次函数图像的信息题.根据图像来回答问题,求交点坐标,顶点坐标,构成三角形的面积等.同时要能判断增减性,在什么情况下函数值大于零,在什么情况下函数值小于零.
4.抛物线的平移.抛物线的形状和大小由二次项的系数决定,一次项系数和常数项主要是确定位置.所以抛物线的平移的前提条件是二次项的系数不变,规律是”左上加,右下减”.
5.根据图像来判断一些代数式的符号.主要用到的是开口方向,与纵轴的交点,顶点以及自变量为1和-1时的函数值来确定.
二、成功之处:
教学内容、教学环节、教学方法都算完美,在教学目标的制定和教学重点、难点的把握上也很准确,在课堂的实施上,由于采用激励的方法调动学生的积极性和主动性,所以整节课非常流畅,效果不错,目标的达成度较高,可以说本人、学生都较满意。
三、精彩之处:
(一)在探究二:已知二次函数y=ax2+bx+c(a≠0)图象的顶点坐标为(-1,-6),并且该图象过点p(2,3),求这个二次函数的表达式中,设计了两个问题:1.通过已知顶点A的坐标(-1,-6),你从中还能获取什么信息?2.在不改变已知条件的前提下,你能选用“一般式”吗?
设计意图是:
1.由顶点(-1,-6),可知对称轴是直线x=-1,函数的最大(小)值是-6.从而得出,当已知对称轴或函数最值时,仍然选用“顶点式”.
2.挖掘顶点坐标的内涵:(1)由抛物线的轴对称性,可求出点p(2,3)关于对称轴x=-1对称点p’的坐标是(-4,3);(2)用点A、点p和对称轴;(3)用点A、点p和顶点的纵坐标等.
3.得出结论:凡是能用“顶点式”确定的,一定可用“一般式”确定,进一步明确两种表达式只是形式的不同和没有本质的区别;在做题时,不仅会使用已知条件,同时要养成挖掘和运用隐含条件的习惯. [内容来于斐-斐_课-件_园FFKJ.Net]
(二)在知识运用部分采用猜想、比较、方法选择等方法引导学生探究问题,从而大大的.提高学生分析问题、解决问题的能力。内容及问题串如下: 四、遗憾之处:在课题引入后,由于对学生估计不足,复习一学生独立完成,这本没有错,但是,学生还习惯有老师引着做的方法,因此在处理完复习一后用时间相对较多,对于后面的教学造成小的影响,特别是对于复习三的处理时不够充分,造成一点遗憾。
四、反思之处:
反思一,集体的智慧是无穷的,一定继续发扬团结协作的好作风;
反思二,教材的内涵是无尽的,一定要挖掘到一定的深广度;
反思三,教师的经验是宝贵的,一定要开诚不公的交流;
反思四,工作的责任心是必要的,一定要无私奉献;
反思五,教师的工作是高尚的,来不的半点虚假。
总之,教师的教学技艺和水平在每天的工作中慢慢的提高,愿老师们学会反思,它是我们提高的催化剂,更是学生需要的助力器。
《二次函数复习》教学设计 第12篇
进入复习阶段学生总是处于做题讲题的情景下,时间一长渐渐地产生厌烦的情绪,复习的效果也就大打折扣,为能达到复习课的目的和要求,同时学生学得不至于太枯燥乏味,我觉得加强小组合作可以使复习的效果更好。
复习时把平时在每个单元中学到的零碎知识系统化,让学生从整体上把握所学内容,先把全册教材中的基础知识按照不同的内容进行分类,把需要熟记的计算公式和所学内容中出现的练习题型分别列出来,这样复习时就有章可循,有的放矢。让学习小组内互相交流设计的问题,达成共识,派代表到屏幕、黑板或实物展台进行展示,讲解。组员进行补充,强调注意事项。老师适时进行点拨、评价。在这个过程中,利用学生动手设计题、做题、学生提示注意事项、总结中层层展开、递进。达到能提高学生运用二次函数的图象、性质来解决问题的能力。学生设计的问题在小组内达成共识,代表学生的整体水平,在此过程中,学生设计的问题,有些是我预想不到的,收到的效果较好。下面我以《二次函数复习》为例
教学目标:
根据《标准》的要求,结合本节课的内容特点和学生的实际情况,本节课的教学目标如下:
知识目标:1.理解二次函数的意义及概念。
2.掌握各类二次函数之间的关系、图象及性质,并能用来解决一些简单的实际问题。
能力目标:进一步体会函数是刻画变化规律的重要数学模型,并进一步体会数形结合的思想。
情感目标:培养学生小组合作意识;敢于发表自己的观点;尊重和理解他人的见解;能从交流中获益。
教学过程设计:
一.复习导入,出示课题:
师:前面我们学习了二次函数的基础知识,这节课我们就来一起复习一下(出示课题)。二.知识梳理,建知识树(所学二次函数的内容)生:一小组展示整理的知识树,其他小组补充完善。师:展示整理的知识树,做重点强调。
教学形式:学生课上根据自己整理的知识树先进行小组交流,补充,代表小组进行展示,其他小组进行补充,完善.老师进行总结:同学们整理的都非常全面、细致,通过整理学生对于这部分的内容又有了更进一步的认识。然后老师出示所构建的知识树,强调注意事项。
设计意图:按照我们的学习习惯,每学完一部分内容都要对其进行知识梳理,使知识系统化,学生对所学过的二次函数的有关知识进行整理,使其纳入所属的知识体系,使知识系统化,并做好知识的前后衔接。三.典例解析,变式应用: 活动一:
师:通过前面对各类函数的学习及知识树的整理,可以看出我们研究每类函数都是研究它的4个方面,定义、图象、性质及应用。这节课我们就从这几个方面进行本部分的复习。
根据定义口答:
已知函数 y(m2)xm2是关于x的二次函数。
(1)满足条件m的值为
,此函数解析式
;
(2)将它的图象向左平移2个单位,再向上平移4个单位,则平移后对应的二次 函数的解析式为
。即y=。
说一说: 结合函数y4x216x12,你能说出它图象的哪些性质? 画一画:
画出这个函数y4x216x12的图像。
设计意图:让学生在说一说、画一画中对二次函数的相应基础知识进行复习,层层递进,为后面的拓展练习的设计、解决奠定基础。
拓展练习:
1、根据图像,写出当x取何值时,y<0?
y>0?
y=0?
2、设图象与x轴的两个交点为A、B,顶点为C,与y轴的交点为D,试求△ABC、△ABD的面积。四边形ABCD的面积呢? 活动二:
师:结合这个二次函数的图象,你还能设计问题并尝试解答吗?
教学形式:学习小组内互相交流设计的问题,达成共识,派代表到屏幕、黑板或实物展台进行展示,讲解。组员进行补充,强调注意事项。老师适时进行点拨、评价。在这个过程中,利用学生动手设计题、做题、学生提示注意事项、总结中层层展开、递进。达到能提高学生运用二次函数的图象、性质来解决问题的能力。
设计意图:通过《配套练习册》上一个小题的改编,既考察了二次函数的图象、性质,又进一步通过进行变式练习层层递进达到发散学生思维,调动学生的积极性的目的。同时在这个过程中让学生在一式多变,一题多解,多题归一中收获数形结合解决问题的重要的数学思想。同时充分利用电子白板的书写、擦除功能,让学生进行一系列的变式训练中充分展示自我,开阔了学生的思维,提高了学生合作、交流及语言表达能力。
师:知道a、b、c、的值可以画出二次函数的图象,反过来给你一个二次函数图象,你能确定出下面式子得的值吗?
若把上述函数有关数值去掉,只保留函数图象,你能快速说出二次函数解析式
2yax2bxc中,a、b、c、b-4ac、a+b+c、a-b+c、4a-2b+c的符号吗?
设计意图:一方面考察学生会根据图象确定a、b、c的值。另一方面由特殊到一般的让学生理解数与形的结合,进一步深化研究函数的常用思想方法数形结合的思想。
2活动三:
师:二次函数和我们的实际生活是密切相关的,你能借助学过的知识尝试解决这个问题吗?
某农场用一段长为30米的篱笆,围成一个一面靠墙的矩形菜园(墙的最大可用长度为10米),中间隔有一道篱笆(平行于AB),设菜园的一边AB为x米,面积为y米2。
(1)求y与x的函数关系式。(2)如果要围成面积为63米2的花圃,AB的长是多少?(3)试求当AB边多长时,菜园面积最大?
设计意图:让学生体会二次函数的实际意义。一方面,使学生感受现实世界二次函数的大量存在;另一方面,体会用二次函数的知识可以分析和解决实际问题,体会函数建模的数学思想。
四.总结反馈, 达成目标:
(一)课堂小结:
1.通过本节课对二次函数的复习,你认为还有哪些地方需要提高?
2.在后面函数学习中,我们还需注意哪些问题?
设计意图:在独立思考和合作交流中,进一步引导学生梳理本节课在知识和数学思想方法的收获,进一步提升对数学思想方法的理性认识。在总结的同时让学生体验收获知识的快乐,培养敢于展现自我、敢说、敢问、自信的学习品质。
(二)课堂检测:
1.已知二次函数y=ax2+bx+c的图象如图所示,则点P(a,bc)在第 象限.(图略)
2.二次函数y=x2-4x+3与x轴的两个交点为A,B(点A在点B的左侧),与y轴相交于点C,顶点为D,则四边形ACBD的面积为。
3.二次函数y=-x2+1的图象与X轴交于A、B两点,与y轴相交于点C.下列说法中,错误的是()
A.△ ABC是等腰三角形 B.点C的坐标是(0,1)C.AB的长为2 D.y随x的增大而减小
设计意图:进一步夯实二次函数的基础知识,学会数形结合的数学思想解决函数问题的基本方法。
(三)布置作业: 必做: 整理笔记本,完善知识树。
选做:根据自己的实际,结合《配套练习册》易错、出错的题目整理到错题本上。
设计意图:必做部分的作业让全体学生重新对所学知识形成知识网络,加深印象打牢基础。选做部分的作业则让学生根据自己的实际进行深入学习,尊重学生的个性发展。
课后反思:
对于这种复习课我们改变了以往课堂中常用的学生个体解答方式,采用小组合作整理知识树、合作交流设计的问题,并进行小组展示,充分发挥小组同学的集体智慧。这样的教学能最大限度的调动学生学习的主动性,培养他们的集体荣誉感。