大一高等数学心得体会范文第1篇
高等数学是高校文科管理类和理工科非数学专业开设的一门非常重要的基础课程, 它不仅是学生学习后续课的重要基础而且对培养学生理性思维、创造意识、审美意识、应用意识等基本素质起到重要的作用。经过一学年的教学工作以及对学生高数学习效果的观察, 发现其中还存在许多问题: (1) 课堂上虽然纪律很好, 但却出现学生上课注意力不集中, 许多学生对老师提出的问题不能积极思考, 布置练习题不能及时完成的现象。 (2) 辅导答疑时间仅有个别同学提出问题。 (3) 课后作业雷同现象严重, 作业的准确率很高。 (4) 考试成绩不理想, 通过率很低。
2调查内容
(1) 调查目的为了更深入了解学生学习高等数学的具体情况, 改进教学方法, 提高教学质量, 使学生尽可能轻松愉快的学习高等数学, 我们对我校大一学生进行了一次问卷调查。
(2) 调查对象。随机抽取了高新学院2007级经管类学生63名和理工类学生67名。
(3) 调查方法。问卷式调查。
(4) 调查结果。本次调查共发放问卷130份, 回收问卷122份, 回收率93.8%。
3调查分析
通过对回收问卷逐项统计, 可以看到当前我校学生高等数学学习的现状。
(1) 对学生数学基础和学习高等数学的兴趣调查。调查结果显示, 高考成绩在120~150分之间的仅有7%, 90~120分的有61%, 90分以下的有32%;40%的学生对数学的兴趣很大或者比较大, 60%的学生对数学的兴趣一般或者没有。这说明: (1) 学生数学基础比较差, 仅有少部分学生具有较强的计算能力、数学思维能力和综合分析问题的能力。基础的数学知识, 是知识和能力再生产的原料, 所以数学基础知识的缺乏会对后续学习更高层次的数学知识带来很大的障碍。 (2) 学生对数学兴趣不高。爱因斯坦曾经说过“兴趣是最好的老师”, 是推动激励学习最有效的动力。由此可见, 学生对数学兴趣不大是导致高等数学成绩普遍不高的一个重要因素。
(2) 对高等数学教材适应性的调查。调查结果显示, “你认为在现用教材的要求下, 高等数学的学习”有2%学生认为很简单, 29%学生认为比较简单, 60%学生认为比较难, 9%学生认为很难;“你觉得在高等数学学习中对基本概念的理解是”, 有5%学生认为很简单, 35%学生认为比较简单, 51%学生认为比较难, 9%学生认为很难;“你觉得在高等数学学习中对基本运算的掌握是”, 有5%学生认为很简单, 54%学生认为比较简单, 39%学生认为比较难, 2%学生认为很难。这三个问题的调查结果显示现在使用的教材对大多数学生来说比较难, 不适应现有学生的认知水平, 从而极大的挫伤了学生学习的积极性。
(3) 对学生数学学习态度的调查。调查结果显示, “课堂上, 你对老师的提问是”38%学生选择积极思考, 37%的学生选择与同学讨论, 25%的学生不思考;“你的作业完成情况”有36%学生独立完成, 48%学生帮助完成, 16%学生抄袭;“课后, 你对当天所学的数学知识能否及时复习?”仅有12%的学生每天复习1小时以上, 61%的学生偶尔复习时间不定, 27%的学生几乎不复习。这说明: (1) 有75%的学生在课堂上是积极的、是在思考问题的, 但仍有1/4的学生从不思考。通过个别访谈了解到这些学生不思考的原因主要是:一部分学生很聪明但思想散漫、懒惰、贪玩, 学习过程中不愿作为、不肯作为。还有一部分学生想学但基础太差, 对高中的许多数学知识都没学懂, 所以高数对于他们来说更是难上加难。 (2) 课后作业大部分学生都能按时完成, 但能真正通过自己独立思考完成的人很少, 有几乎2/3学生是靠与其他同学讨论或直接抄袭完成的, 名义上是讨论交流, 实质上几乎照搬别人完成的。 (3) 大部分学生不能够课后及时复习高数, 甚至于学生错误的把学好数学的希望完全寄托在老师身上。
(4) 对学生数学学习方法的调查。调查结果显示, “在数学学习中, 你遇到不会的问题你是如何处理的?”有7%的学生及时问老师, 65%的学生及时与同学交流, 18%的学生反复思考, 不轻言放弃, 直到弄懂为止, 10%的学生觉得自己不可能解答出, 放弃这道题;“课余时间, 你是否经常看高等数学方面的辅导书?”仅有3%的学生经常看, 51%的学生偶尔看, 46%的学生从来不看。这表明: (1) 不少学生缺乏自学能力, 独立思考能力和意志力。 (2) 学生缺乏有效的学习方法, 还没有学会学习。在高等数学的学习中沿用死记硬背的方法, 所学内容不能融会贯通, 对挫折承受力差, 有严重的自卑感。
(5) 对学生数学学习能力的调查。调查结果显示, “你是否觉得听懂了老师的讲课, 自己做却总是做不出来?”有41%的学生选择是, 47%的学生选择有时是, 12%的学生择不是;“你觉得在数学学习过程中自己欠缺哪方面的能力?”有35%的学生缺乏逻辑思维能力, 42%的学生欠缺分析能力, 42%的学生缺乏创新能力。这表明: (1) 大部分学生的理解力差, 仅是表面听懂了, 实质上对老师所讲的知识没有理解透彻, 不能够举一反三。 (2) 有相当一部分学生数学能力差, 这一点也充分体现在考试中。由于参加考试的学生都是非数学专业, 因此根据学科特点考试题中计算题、解答题稍多证明题较少。学生计算的准确率较低, 很少有学生步骤和答案完全正确的。证明题往往是拉开层次的题, 综合性较强, 所以得分率更是低。
(6) 对数学教师课堂教学的调查。通过学期末的学评教活动以及两道简述题的问卷, 调查结果显示, “你认为你的高数老师应注意什么, 才能满足大多数同学的要求?”“谈谈你理想中的数学课堂状况。”大部分学生对高数教师教学是认可的, 但也提出了一些诚恳的意见:课堂上要营造快乐的学习气氛, 多注意与学生的互动交流讨论, 师生打成一片, 使同学们的思想能够让老师知道;应注意讲题的方式教法新颖, 因材施教针对不同层次学生采取不同教法;应注意学生的数学基础及接受能力。
摘要:为了更深入了解独立学院学生学习高等数学的具体情况, 从而改进教学方法、提高教学质量, 使学生尽可能轻松愉快的学习高等数学, 对我院大一学生进行了问卷调查。通过问卷调查, 了解和掌握学生的学习动态, 分析了学生的学习状况, 有针对性地提出了高等数学教与学存在的问题和解决办法。
关键词:高等数学,学习现状,调查分析,教学
参考文献
[1] 张大均.教育心理学[M].人民教育出版社, 2004, 4.
[2] 罗增儒, 李文铭[M].陕西师范大学出版社, 2006, 12.
[3] 朱惠健, 金健.关于高等数学学习状况的调查分析[J].常熟理工学院学报, 2005, 11 (19) :6.
大一高等数学心得体会范文第2篇
记得刚开学的时候,我对高数还是很害怕的,我虽然上课认真听讲,但我还是不大明白,当然那是由于刚开始的课程确实是很抽象的,很难以高中时的解题思维理解,但后来学的就不是那么的吃力了,再加上我的勤奋看书。
对于高数的学习大多数人都认为应该课前预习、上课认真听讲、课后复习。但那只能是理想的状态下,事实是不允许我们那样做的。由于我的数学还算有点功底,一直以来,我只做到了其中的一点半,而且成绩还算过得去,因此,我认为对于高数的学习,我们应该上课认真听讲,时课后复习。我们主要应该在课堂上认真听讲,理解解题方法,我们现在所需要的是方法,是思维,而不仅仅是例题本身的答案,我们学习高数不是为了将来能计算算术,而是为了获得一种思想,为了提高我们的思维能力,为了能够用于解决现实问题。
大一高等数学心得体会范文第3篇
1弥补高等数学不能与中学数学衔接的缺陷
我国高中数学课程改革与高等数学课程改革缺乏科学统筹,实施步骤不统一。高等数学课程改革启动与实施相对滞后,已经给我国的高等数学教育和教学带来了一定困难。随着中学数学教学的不断改革, 越来越多的高等数学的内容下移到中学,比如:极限、导数;同时也有些知识在中学数学不做要求,高等数学又没有作相应的补充,如:反三角函数、极坐标、复数等。中学只注重学生对知识点的掌握,教师以高考为标杆,只注重学生的解题能力,对于数学理论不作要求。比如,用导数来判断函数的增长性是高考的重点内容, 所以学生对求导很熟悉,求导公式背得很熟。但是对导数概念,以及求导公式怎么得到却知之甚少,甚至连极限的都不能很准确的理解。但是高等数学,不仅要求会求导数,还要理解导数的概念及导数与微分之间的关系,所以如果这部分内容不讲或者略讲,学生还会仅仅停留在只会做题的层面,对导数的概念及里面所蕴含的数学思想不能理解,实质没有提高。如果按照高等数学教材再详细讲一遍,又没必要。为此,就需要任课教师研究高中教材,对有些知识做相应的补充,对有些知识精简,让学生平稳地从中学数学过渡到高等数学。
2以学生为主体,增强学生学习的主动性
在高中阶段学习几乎是每个学生全部的生活重心,奋斗目标只有一个:考取大学,家长为此也投入很多。在经历了紧张的高中阶段升入大学,大部分学生有如释重负的感觉,总想着过得轻松些,父母又不在身边,一段时间内会感到迷茫,一时不知该何去何从,不知下一个目标是什么,不知大学所学的知识有什么用,总觉得大学的四年时间会很长。对于高等数学而言,极限与导数部分在中学已经学过, 他们会觉得这门课很简单,不必费什么精力,这实际上是给他们设了一个陷阱,因为事实并非如此。中学数学是常量数学,研究对象是有限的、直观的,偏重于计算;而高等数学的研究对象是变量,是从现实问题中归纳出的抽象概念,需要严谨的逻辑推理和深入的抽象思维。越往后学生越会觉得难,学起来会越吃力,越被动。为此,作者在教学中总结出如下几个方法:(1)通过做题让他们找回自信,找到学习高等数学的感觉与方法。“数学不做题,等于不学习”,在数学上,做题等于是对所学知识的应用。许多概念和命题就是在反反复复做题中达到融会贯通的。教师可以适当地搞一些随堂解题竞赛,提高他们的学习乐趣;(2)鼓励学生课前预习,把写预习报告作为作业让他们完成,增强学习的主动性;(3)在讲解内容时, 适时地穿插些数学史中与数学家们的有趣的故事,增加数学学习的趣味性。四:借用专业的数学软件,上课过程中穿插些利用数学软件进行计算作图的问题, 所做的图形精确漂亮,赏心悦目,可使学生体会到数学的美,增加了学习兴趣。学生是学习的主体,只有学生积极主动地开展学习活动,学习的效果才能快速地呈现出来。
3利用国内外名校的视频资源和国外的优秀教材 ,辅 助教学
传统教育的场所就是课堂,而课堂只是学习的场所之一。随着互联网的发展,人们可以通过互联网获得很多的信息。近年来许多世界名校,比如:麻省理工学院、耶鲁大学等,把教学视频上传到网上,供世界各地的求知者免费使用。我国也于2003年提出国家级精品课程建设, 利用互联网, 实现了优质教学资源共享,学生们有了向国内外一流教育机构学习的机会。公开课新颖与授课教师独特的授课方式瞬间抓住了高校学子的兴趣。任课教师平时可收集与自己所授专业课程相关程度高的国内外名校网络公开课, 在教学过程中作为辅助材料和课外学习的补充与延伸,推荐给学生,并且组织一些基于网络公开课相关内容的讨论,做到提供重点难点指导,及时解答学生使用中的困惑,激发学生的求知欲,培养独立思考的能力和积极探索的精神。对于国外的微积分教材,Thomas微积分是一套堪称经典的辅助教材,目前已有第十版。它与国内教材比较,第一个突出特点是是理论与实际充分结合,主要体现在解决实际问题的应用题方面。内容丰富,涉及面广,紧密结合了最新的实际问题,物理、建筑、几何 、生物、医学、经济、金融、军事、政治等各方面的问题都有;增加了题目的趣味性,拓宽了读者的知识面,让学生能切身感觉到学有所用。而国内教材中的应用题基本上限于微积分在物理、几何中的简单原始的应用,感觉所学知识与现代实际问题相距遥远,学生会感觉学而无用,从而厌学。最后教学就必定会沦为填鸭式的教学,学生只单单是为修学分而学,学习枯燥乏味机械。
4跟学生多交流 ,改善师生关系 ,提高学生对所学课程的热忱
师生关系是教育过程中最重要的人际关系, 建构良好的师生关系是教师做好教育的根本点。师生关系的好坏会给学生的学习心态带来很大的影响:学生若喜欢哪个教师,那门课程成绩往往会提高;若不喜欢哪个老师,那门课成绩往往就下降。良好的师生关系有利于学生形成对学业的积极情感; 不良的师生关系可能使学生产生孤独的情感,对学业产生消极的情感、在学校环境中表现退缩、与老师同学关系疏远, 从面影响其学业和成就。为了尽可能地处理好师生关系,多沟通增加彼此的了解是最好的途径。师生之间要达成理解,教师首先要“跳出”自己的世界,走进学生的世界。要理解学生,就要以学生的视域来思考教育,实施教育。
摘要:针对在教学实践中影响高等数学教学效果的若干因素,本文提出了四个针对性的解决方法。
大一高等数学心得体会范文第4篇
【摘要】结合高等数学教学实践,本文对在高等数学教学中渗透数学史教育进行了探讨。文中阐明了数学史在高等数学教学中的作用,以及提出在高等数学教学中渗透数学史教育的一些建议和措施。
【关键词】高等数学;数学史;教学
数学史和数学教育的有机结合已成为当今世界数学教育的热点问题。法国著名数学家庞加莱(1854~1912)曾说过:“如果我们希望预知数学的将来,适当的途径是研究这门学科的历史和现状。”[1]
一、高等数学教学面临的问题
数学是研究现实世界的数量关系和空间形式的科学,是人们在社会生产和生活实践中总结、提炼和抽象出来的。内容的抽象、结构的严谨、应用的广泛、发展的连续是数学区别于其他学科的显著特征,也是数学学习难度大的原因之一。数学内容的抽象性给学生学习造成接受上的困难;结构的严谨性给学习数学造成理解上的困难;应用的广泛性造成掌握上的困难;数学发展的连续性决定数学知识是连续的,要明白后面的知识,必须了解前面的内容。高等数学是大学低年级普遍开设的基础课,学生对高等数学掌握得好坏直接关系到其对后续课程的学习和掌握,也是决定学生能否升入高一级学府深造的关键。因此,教师在教学过程中如何教则显得尤为重要。通过多年的高等数学教学实践表明,在教学中渗透相关的数学史知识是一个好的措施。19世纪英国的格莱舍曾说:“任何企图将一种科目和它的历史割裂开来,我确信,没有哪一种科目比数学的损失更大。”[2]可见,如果数学教学中缺少相关的数学史知识,数学教学就会失去其教育价值,数学史对数学教学有十分重要的意义。
二、数学史在高等数学教学中的作用
(一)数学史有助于激发学生的学习兴趣
王梓坤院士曾指出:“数学教师的职责之一就在于培养学生对数学的兴趣,这等于给了他们长久钻研数学的动力。优秀的数学教师之所以在学生心中永志不忘,就是由于他点燃了学生心灵中热爱数学的熊熊火焰。”[3]课堂上介绍数学家的趣闻轶事、数学概念的起源、古今数学方法的简单对比等等,都能起到激发兴趣的作用。如果我们今天的课堂能多一点兴趣,多一点人情味,也许能少扼杀几个未来的数学家?
(二)数学史有助于学生更深刻地理解所学的数学概念
数学是以概念为起点,以公理、定理为依托,用各种思维方法总结出来的一个学科体系。新课程中增加的许多数学概念,如极限、连续、导数、微积分等等学生理解起来比较困难,而一个概念只有在与其历史背景联系时,才能容易被人所理解、所接受。[4]因此,在教学中可以结合数学史提供各种数学问题的历史背景,让学生理解有关概念的来龙去脉,以获得真正的理解,也能把握数学发展的整体概貌,组织起结构良好的知识网络。
例如,在讲微积分时,很多学生对微积分的概念及数学思想方法不甚理解,这时可借助数学史讲述德国数学家莱布尼兹发现微积分的过程。大约从1672年开始,莱布尼兹将他对数列研究的结果与微积分运算联系起来,借助于笛卡儿的解析几何,把曲线的纵坐标用数值表示出来,并想象一个由无穷多个纵坐标组成的序列,以及对应的值的序列,而被看作是确定纵坐标序列的次序。同时考虑任意两相继的值之差的序列。莱布尼兹后来在致洛必达的一封信中总结说:“求切线不过是求差,求积分不过是求和。”[1]这一数学思想贯穿了高等数学概念的始终,如求曲边梯形的面积、平行截面面积为已知的立体的体积、平面曲线的弧长、二重积分、曲线积分与曲面积分等等,这一数学思想也可用于其他課程相关概念的学习上,真正做到举一反三。
(三)数学史有助于培养学生的创新精神
M·克莱因在《古今数学思想》的序言中指出:“课本中的字斟句酌的叙述,未能表现出创造过程的斗争、挫折,以及在建立一个可观的结构之前,数学家所经历的艰苦漫长的道路。学生一旦知道这一点,他将不仅获得真知灼见,还将获得顽强地追究他所攻问题的勇气,并且不会因为他自己的工作并非完美无缺而感到颓丧。实在说,叙述数学家如何跌跤,如何在迷雾中摸索前进,并且如何零零碎碎得到他们的成果,应能使搞研究工作的任一新手鼓起勇气。”[5]
数学前进的每一步都可以挖掘为创新教育的极好教材。数学史中包含大量的创造性思维形成和发展的案例且内容与数学教材密切联系。所以只要教师认真设计,穿插在教学中,不仅使教材内容更加生动,而且也是培养学生创新精神的好方法。因为通过教师对鲜活过程的叙述与分析,学生从中领悟到抽象的创造性思维形成并不断向前推进的过程是怎样的情形,创造性思维的过程是怎样进行的。把数学史变成培养学生创新精神的教材之一。
(四)数学史有助于学生体会到数学的应用价值
在数学教学中让学生学会使用数学知识是我们学习数学的一个非常重要的目的,而历史上每项数学知识的产生和发展几乎都是离不开生活和生产实践的,它们都是在实践中产生,而最终又被应用到实践中去。可是,现在高等数学教材的呈现形式是以知识的逻辑体系组织的,是形式化了的东西,它省略了知识的发生的原因和发展过程。在数学教学中引进数学史可以重现知识的发生的原因和发展过程。如近代微积分的酝酿,主要是在17世纪上半叶这半个世纪。自文艺复兴以来在资本主义生产力刺激下蓬勃发展的自然科学开始迈入综合与突破的阶段,而这种综合与突破所面临的数学困难,使微分学的基本问题空前地成为人们关注的焦点:确定非匀速运动物体的速度与加速度使瞬时变化率问题的研究成为当务之急;望远镜的光程设计需要确定透镜曲面上任一点的法线,这又使求任意曲线的切线问题变得不可回避;确定炮弹的最大射程及寻求行星轨道的近日点与远日点等涉及的函数极大值、极小值问题也亟待解决。与此同时,行星沿轨道运动的路程、行星失径扫过的面积以及物体重心与引力的计算等又使积分学的基本问题——面积、体积、曲线长、重心和引力计算的兴趣被重新激发起来。了解了这些,就会促进学生对数学知识应用价值的理解,自觉地将其应用于实践,从而培养了学生的实际应用能力。
三、在教学中渗透数学史的策略
数学史知识对于促进学生理解和掌握高等数学知识有着重要的作用,但要在实际的教学中见到功效,还必须采取一定的策略。如何在教学中讲授数学史知识以发挥其功效呢?
(一)故事策略
虽说数学史并不等于数学故事,但是数学或数学家的奇闻轶事“可以用在课堂上活跃气氛,给数学加一点娱乐的调味品,给它涂抹一点儿人文的色彩,激发同学的热情,缅怀伟大的创造者们的业绩,找回正在消失的兴趣,追寻文化历史的线索,同时也重温一些概念和思想。”[6]
说故事的目的就是要设计一个教学情景,这个教学情景主要是能引起学生的学习动机与兴趣。同时,也可利用故事情景引出学生已有的数学概念,或是借故事情节引入要教的数学概念,也可以利用故事情节的铺设,呈现给学生想要解决的问题等。
(二)方法比较策略
事实上,数学教学中涉及的许多问题,从它的历史到现在,经过数代数学家们的不懈努力,大都产生过不少令人拍案叫绝的各种解法。如勾股定理,就有面积证法、弦图证法、比例证法等300余种;求解一元二次方程,历史上就有几何方法、特殊值代入法、逐次逼近法、试位法、反演法、十字相乘法和公式法等;求不规则图形的面积,历史上也有德漠克利法、穷竭法、割圆法、平衡法、开普勒法和沃利斯法以及现代的微积分方法。通过搜集比较历史上的各种不同方法之后,可以拓宽学生的视野,培养全方位的认知能力和思考弹性。
(三)追踪历史起源策略
追踪历史起源,就是要引导学生去揭示或感受知识发生的前提或原因、知识概括或扩充的经过以及向前发展的方向,引导学生在重演、再现知识发生过程的活动中,内化前人发现知识的方法和能力。使学生在掌握知识的同时,还能占有镌刻于知识产生中的认识能力,这种认识能力正是构成创新思维能力的核心。
四、结束语
数学史知识对于学生理解和掌握高等数学知识具有重要的作用,但在实际的教学中,教师还必须遵循一定的原则:认真对待其教学过程,注重结合相应的知识,还要讲求细节等。这样,作为高等数学教师就有了更高的要求。首先,教师应当认识到数学史知识教学的意义,重视其教学,自觉端正对其教学的态度。其次,应广泛地阅读数学史知识,深入了解教材中每项知识的产生、发展和与其相关的历史人文知识,开拓自己的视野,丰富自己的历史知识结构。第三,还应积极改革教学方法,将历史知识有机地渗透到一般的数学知识教学中去,让历史知识在教学中真正起到它应有的作用。另外,向学生推荐一些适合的数学史书籍供他们课后阅读,例如,数学家传记、数学名著,较通俗的数学通史、专题数学史研究的著作等,不仅可以增进学生对数学的兴趣和理解,同时也是进行数学史教育的好方法。
参考文献
[1]李文林.数学史教程[M].北京:高等教育出版社,2000.
[2]何梅.高校数学教学的实践与思考[J].淮海工学院学报,2010(5):77-79.
[3]王梓坤.让你开窍的数学丛书序[M].郑州:河南科学技术出版社,1997.
[4]唐光伦.发挥数学史作用提高数学教学质量[J].四川文理学院学报(教育教学研究专辑),2008,18:117-118.
[5](美)M·克莱因著.古今数学思想(第一册)[M].上海:上海科学技术出版社,2002.
[6](美)H·W·伊弗斯.数学圈1[M].湖南:湖南科学技术出版社,2007.
大一高等数学心得体会范文第5篇
关键词:数学史;高等数学教学;作用
一、数学史知识在高等数学教学中的应用现状分析
通过同行听课的形式,结合华南农业大学高等数学的教学实践,对教师应用数学史知识进行高等数学教学的现状进行分析如下:
1.有些教师对数学史知识在高等数学教学中的作用认识不足。有些教师认为数学史知识在高等数学的教学中是“可有,可无”的,甚至有的教师认为在高等数学课上讲数学史知识是浪费时间,等等,这种错误的认识势必影响数学史知识的在高等数学教学中作用的发挥。
2.有些教师不知道如何将数学史知识应用到高等数学教学中去。有些教师虽然认识到了数学史知识在高等数学教学中的重要作用,但是却不是很善于将数学史知识渗透进高等数学教学中去,或者是数学史知识的教育与高等数学教学相分离,没有发挥出数学史知识教育的真正作用。
3.有些教师自身的数学史知识不够丰富。数学史是师范类数学专业的一门必需课。但在高校中,很多数学教师毕业于非师范类大学,没有数学史方面的教育背景,数学史方面的知识比较匮乏或者不系统,以致无法将数学史知识应用于教学实践。总之,许多教师没有充分发挥出数学史知识在高等数学教学中的真正作用和效果。
二、數学史知识在高等数学教学中的作用
针对一些教师对数学史知识在高等数学教学中的作用认识不足的现状,结合作者多年来高等数学教学的实践,谈谈将数学史知识应用于高等数学教学的作用。
1.将数学史知识融入高等数学教学中有利于激发学生的学习兴趣[8,9,11-13]。著名教育家陶行知说:“兴趣是最好的老师。”数学史中存在大量可用于提高学生学习兴趣的例子。例如,在讲微分方程的时候,教师可以告诉学生,冥王星的发现是在利用微分方程理论计算出它的轨道后,再通过天文学家长期观察发现的。又如,在讲导数概念时,适当介绍导数的两个产生背景瞬时速度和光滑曲线上一点的切线的定义,可让学生体会到数学概念是来源与生活实践的,从而激发他们学习的兴趣。此外,数学史上一些有趣的悖论也可以增加学生的兴趣。
2.应用数学史知识进行高等数学教学有利于帮助学生加深对数学概念、方法的理解[13]。数学家与教育家F克莱因认为:学生在课堂上遇到的困难,在历史上也为数学家所遇到,那么,如何能使学生顺利克服这些困难呢?如果学生了解了有关概念的形成过程,就有可能从中受到启发,从而可以帮助学生加深对数学概念和知识的理解[10]。例如,胡桂英等[3]将极限的数学史知识融入极限理论的教学,使学生了解了数学极限思想的形成过程,较好地实现了从认识有限量到认识无限量的思想转变过程。
3.在高等数学教学中融入数学史知识有利于对学生进行情感教育[8,9,11,12,17]。通过介绍我国的数学成就,有助于弘扬祖国的优秀文化,激发民族自豪感和爱国主义情怀[3]。例如,在讲述极限概念时,教师可以介绍中国先秦时期伟大的哲学家庄子引用过的一句古语:“一尺之棰,日截其半,万世不竭。”说明我国极限思想的源远流长;还可以介绍刘徽的“割圆术”以及其取得的成就,激发学生民族自豪感。通过介绍数学家勤奋刻苦、锲而不舍的追求真理的精神有助于培养学生的意志品质和科学精神。例如,在讲述欧拉方程时,适当介绍一下数学家欧拉,欧拉是历史上写论文最多的数学家,但在他28岁时噩运降临在他身上。通过口述,他儿子记录的形式计算,他坚持了20年直到最后一刻。这个故事可以培养学生的意志品质和科学精神,激励学生努力学习。
4.在高等数学教学中应用数学史知识有利于完成教书育人的教学目标。教师的主要任务是教书育人,“教书”主要是向学生传授知识,“育人”主要是让学生学会为人处事。历史是由人民群众创造的,数学史主要是由数学工作者和数学家创造的。在数学史上,有值得学习的榜样,也有让人为之扼腕的史实。例如,在讲级数理论中的阿贝尔定理时,适当介绍天才数学家阿贝尔的杰出贡献,以及他的悲惨遭遇,可以让学生懂得一些为人处事的道理。
三、将数学史知识融入高等数学教学的若干原则
针对有些教师不知道如何将数学史知识融入到高等数学教学中去的现状,结合作者自身的教学实践,作者认为将数学史知识融入高等数学教学应该遵循一定的原则。
1.数学史知识与教学内容相结合的原则。利用数学史进行高等数学教学的目的之一是为了帮助学生加深对数学概念、方法的理解,使高等数学的教学更加生动活泼。如果将介绍的数学史知识和教学内容相分离,那么有可能使取得的效果适得其反,舍本逐末。因此,为了更好地发挥数学史知识在高等数学教学中的作用,必须遵循数学史知识与教学内容相结合的原则。
2.数学史知识为辅,高等数学知识为主的原则。数学史知识的引入是为了使高等数学教学达到更好的教学效果。因此,数学史知识的介绍不宜占用课堂学时太多,否则会有喧宾夺主之嫌。在融入数学史知识的时候,教师应该认真整理、甄选数学史的相关资料,设定好数学史知识教学的教学情景和教学目标,以一种比较自然的方式融入到高等数学教学中去。
3.数学史知识与学生现有的知识水平相适应的原则。在高等数学中,所引用的数学史知识必须与学生知识水平相适应。如果引入的数学史知识难度过大,学生理解不了,就会无法发挥数学史知识的作用,甚至让学生望而生畏,增加学生的学习负担。与学生知识水平相近的数学史知识(课外知识)既可以帮助学生理解高等数学的相关知识,还可以拓展他们的视野。
四、提高教师数学史修养的几点建议
说到底,教师是应用数学史知识进行高等数学教学的实施者。因此,要在高等数学教学中充分地发挥出数学史知识的作用,必须提高教师的数学史修养。结合本校的情况,作者提出以下几点建议:
1.请进来,走出去。“请进来”是指邀请数学史专家给高等数学教师讲授有关数学史知识;“走出去”是指选派一线在职教师参加数学史方面的专业研讨会进修培训班等。
2.自力更生,自己动手。组织教研室相关教师编写一些有关数学史的教学资料,并开发相关的教学资源库,为教师提供更为丰富的数学史知识教学素材。
3.努力创造应用数学史进行教学的条件。学校应尽可能地订阅数学史方面的报刊杂志,给同学介绍数学家的故事等等,提供一些成功应用数学史知识进行高等数学教学的案例,并制作成光盘供相关教师学习、借鉴等等。
总之,只有教师真正认识到了数学史知识在高等数学教学中的重要作用,掌握了应用数学史知识的方法,并自觉应用数学史知识进行高等数学,才能收到较好的教学效果。
參考文献:
[1]张凤敏,刘玉波.高等数学课程的教学实践与探索[J].教育与职业,2013,(06):130-131.
[2]高月琴.数学史知识在高等数学教学中的应用[J].高等数学研究,2008,(01):60-62.
[3]胡桂英,钟军平,吴昊文.高数“极限”教学与数学史的整合摭谈[J].中国成人教育,2012,(3):134-135.
[4]高玉芹.高等数学口诀及在教学中的应用[J].教育与教学研究,2013,(02):68-70.
[5]史艳华,王芬玲.高等数学与高中数学的衔接问题探讨[J].教育与职业,2013,(20):127-128.
[6]张桂梅.高等数学教学要注重学生非智力因素的培养[J].教育探索,2012,(04):66-67.
[7]刘艳芳.提高高等数学教学质量的初探[J].科技信息,2013,(16):158-159.
[8]宜素环,单秀丽.关于高等数学教学的改革针对学生的厌学问题[J].职教论坛,2012,(26):24-25.
[9]邓燕.浅析数学史在高等数学教学中的作用[J].高等理科教育,2006,(4):22-24.
[10]韦兰英,张振强.谈谈数学史教育在高等数学教学中的渗透[J].中国科技信息,2008,(23):268-269.
[11]吴筱宁,黄建科.关于在高等数学教学中渗透数学史的思考[J].教育与职业,2009,(20):115-116.
[12]张敏捷.略论数学史在高等数学教学中的意义[J].魅力中国,2009,(25).
[13]杨颖,刘颖.数学史在高等数学教学中的应用[J].通化师范学院学报,2010,(12):87-88.
[14]马书燮.数学史与高等数学教育[J].吕梁教育学院学报,2011,28(1):94-95.
[15]周俊林.数学史对高等数学教育的影响[J].河南教育学院学报:自然科学版,2013,(1):60-61.
[16]赵清波,李文潮,吴克坚,等.数学史融入医科院校高等数学教学的效果分析[J].第四军医大学学报,2009,30(3):256
[17]夏艳清.高等数学教学中渗入数学史的作用与实践[J].廊坊师范学院学报:自然科学版,2012,(01):92-94.
[18]景元萍,李艳晓.数学史融入高等数学教学的有效途径[J].科技资讯,2012,(31):176-177.
大一高等数学心得体会范文第6篇
(1) 数列极限,要用到夹逼公式,好像是书上的原题
(2) 求一个极限x→--∞时的极限
(3) 把一个函数的水平渐近线求出来
(4) 求一个分段函数在某个点的左倒数(或右倒数)
(5) 求不定积分(凑微分法)
二.单选(3分*5)
(1) 关于一个重要极限的单选题
(2) 求一个函数在指定点的导数(含有绝对值,要用定义法求)
(3) 选出下列哪个不能用洛必达法则求
(4) ∫
(5) 下列反常积分中哪个收敛,哪个发散
三.计算(5分*8)
(1) 极限的计算(无穷未定式)
(2) 求导
(3) 隐函数求导
(4) 求一个函数拐点
(5) 求不定积分(凑微分)
(6) 求定积分(变量替换)
(7) 分段函数求定积分
(8) 上限函数求极限(参考P242例8)
四. 综合题(10分*3)
(1) 使用罗尔定理的证明题
(2) 应用定积分计算旋转体体积(参考P278)
(3) 最难题,考点涉及积分上限函数,洛必达法则求积分,等价无穷小
以上考题最终解释权归西大所有,老邓只给了考点,例题参考等待中,欢迎大家积极分享
高数期末重点
一 填空题4分5道
1求导 2二阶导数符号、极值 3拉格朗日中值 4不定积分与求导 5反常积分 二单选45
1曲线的切线 2极限含义 3复合函数求二阶导 4原函数 5瑕点
三计算66
1求极限(函数) 2洛必达法则 3求导数(某点) 4隐函数求导 5求不定积分(分部) 6定积分
四综合题64